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Welcome to Pedometrics2024!  
 
We are excited to host the bi-annual pedometrics meeting and we have designed the conference in a 
way that we think you will like. We have centered the conference around the “10 challenges for the 
future of Pedometrics” (Wadoux et al., 2021). These challenges capture broad trends in pedometrics 
research and we hope that this framework will encourage discussion and collaboration. We have 
dedicated one session to each challenge and have included ample time to discuss progress on each 
challenge. Additionally, we have made room for two field trips to visit and discuss the unique soils of 
arid lands and we have programed multiple engaging social events! 
The conference will be held in the Corbett Student Union on the Campus of New Mexico State 
University, International Mall, Las Cruces, NM 88003 
The Pedometrics 2024 Organizing Committee 
Dr. Colby Brungard 
Dr. Alexandre Wadoux 
Dr. Shawn Salley 
 
Alexandre M.J.-C. Wadoux, Gerard B.M. Heuvelink, R. Murray Lark, Philippe Lagacherie, Johan Bouma, Vera L. 
Mulder, Zamir Libohova, Lin Yang, Alex B. McBratney. Ten challenges for the future of pedometrics, Geoderma, 
Volume 401, 2021. https://doi.org/10.1016/j.geoderma.2021.115155. 
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The 10 Challenges 

Challenge Central Question Keywords 
How can we better understand soil formation? 

1 

Can we produce quantitative models of the 
complex short and long-term processes of soil 
formation which are predictive of the spatio-
temporal variation of soil properties? 

Soil change; Forecast; Quantitative models of pedogenetic 
processes; Time series; Dynamic mechanistic models; 
Soil-landscape evolution models; Quantifying soil genesis 

2 
Can we develop a quantitative and numerical 
global soil classification that unifies the existing 
systems and enables transfer between them? 

Numerical soil classification; Soil taxonomy; Local and 
regional applications; Communication between 
classification systems; Similarities between soil profiles; 
Translation between systems; Near real-time soil 
classification 

3 In what ways can we use data-driven models to 
learn about pedological processes? 

Interpretation of complex models; Multi-scale drivers of soil 
variation; Functional relationships between covariates and 
soil data; Hypothesis discovery; Sensitivity analysis 

How can we improve methods to obtain relevant soil data? 

4 Can we measure soil properties more efficiently? 

Soil sensing; Pedotransfer functions; Translation of 
qualitative soil information; Participatory approaches and 
citizen science; Sampling design; Measurement error; 
Multi-source data integration 

5 

Can we develop workable techniques to derive 
predictions of soil characteristics at scales 
appropriate for modelling and decision making, by 
up- and downscaling observations in 3D space and 
time? 

Upscaling and downscaling; Sampling support; Change of 
support; Temporal scale issues in modelling change; 
Validation for change of support 

6 Can we incorporate mechanistic pedological 
knowledge in digital soil mapping? 

Pedological knowledge; Extrapolation; Qualitative soil 
information; Mechanistic modelling; State-space 
modelling; Uncertainty in mechanistic knowledge 

How can we improve our ability to address demands by soil users? 

7 How to recognize, quantify and map soil 
functionality? 

Soil function and services; Citizen-observation of soil 
functions; Land evaluation; Multivariate mapping; Bio-
physical models; Co-building of functions with end-users 

8 

Can we find ways to connect pedodiversity to soil 
biodiversity, and translate the connections to 
relevant soil services and soil management 
practices? 

Pedodiversity; Pattern of soil biodiversity; Scaling issues in 
pedodiversity; Taxonomic distance; Hyper-variate data of 
soil biodiversity; Sensing for microscale biodiversity 

9 

Can we find ways to express the uncertainty of 
predictions of soil properties or class allocations 
which are meaningful to the users of those 
predictions? 

Uncertainty quantification; Value of information; Risk 
assessment; Uncertainty and decision-making process; 
Communication of uncertainty; Decision theory and 
support scale 

10 
How to quantify soil contributions to ecosystem 
services with a framework enabling both local and 
regional soil management? 

Ecosystem services; Local and regional soil management; 
Empirical land evaluation schemes; Soil health and 
security quantification; Soil contributions to realizing the 
SDG 
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Generalized Weekly Agenda 
Please refer to daily agenda for exact times  

Time Sunday Monday Tuesday Wednesday Thursday Friday 

  4-Feb 5-Feb 6-Feb 7-Feb 8-Feb 9-Feb 
7:30     

    
    

8:00 On-site 
registration 
and check 

in 
8:30 

Morning 
Workshops 

9:00 Conference 
welcome Challenge 4: 

Spectroscopy Challenge 5 9:30 
Challenge 1 

Challenge 9 
Challenge 10 10:00 

10:30 
Lunch 

Challenge 7 
11:00 

Challenge 2 Reflection and 
future work 11:30 

Field trip #2: 
White Sands 
National Park 

12:00 Lunch Challenge 4: 
Proximal 
Sensing 

Conference Adjourns 

12:30 Lunch on 
your own 

Field Trip #1: 
Soils and 

Landscapes of 
Desert Basins 

and River Valleys 

  

13:00 
Challenge 3 

  

13:30 

Afternoon 
Workshops 

  

14:00 
Challenge 4: 
Digital Soil 
Mapping 

  

14:30 Pedometrics in 
Govn't, 

Scientific, and 
Commercial 

Organizations  

  

15:00   

15:30    

16:00     

16:30     

17:00  Friendly 
Game of 
Soccer 

and/or Flag 
Football 

 

Conference 
Dinner, 

Awards, and 
Dancing 

  

17:30        

18:00 
Welcome 
Reception 

    

18:30      

19:00      

19:30      

20:00       

20:30       

21:00       

21:30       

22:00             
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Figure 1. NMSU Campus Map 

  



8 
 

Program 
Sunday 4th February 
8:30-12:30 Containers for reproducible Digital Soil Mapping at different scales   

Skeen Hall (N120) 

8:30-12:30 Algorithms for Quantitative Pedology  
 -cancelled- 

12:30-13:30 Lunch on your own  

13:30-17:30 Assessment of spatial patterns of soil properties predictions  
Skeen Hall (N120) 

13:30-17:30 Deep learning for soil spectroscopy  
Skeen Hall (N128) 

18:00-20:00 Welcome Reception 
 Pete’s Patio (Corbett Student Union) 

Monday 5th February 
8:00-9:00 On-site registration and check in  

9:00-9:10 Conference Welcome  
Alexandre M.J-C. Wadoux - Pedometrics commission chair and organizing committee 

9:10-9:20 The 10 Challenges  
Shawn Salley – Pedometrics organizing committee 

9:20-9:30 Conference Logistics  
    Colby Brungard – Pedometrics organizing committee 
 
Challenge 1. Can we produce quantitative models of the complex short and long-term processes 

of soil formation in the landscape which are predictive of the spatio-temporal 
variation of soil properties? 

Moderator: Shawn Salley 

9:30-9:45 Keynote Challenge 1  
Tom Vanwalleghem 

9:45-9:55 1.1 Continental Monitoring Soil Property Changes Under Human Pressure Using Pedogenon 
Mapping  
Quentin Styc 

9:55-10:05 1.3 Century-Long Quantification of Soil Loss in Eastern South Dakota Agricultural Field  
Eli Halverson 

https://conference.nmsu.edu/event-venues/petes-patio.html
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10:05-10:15 1.4 Modelling the effect of topographical position and precipitation on soil profile variation 
with Soilgen  
Tom Vanwalleghem 

10:15-10:30 Challenge 1 Discussion  

10:30-10:50 Break  
 
Challenge 2. Can we develop a quantitative and numerical global soil classification that unifies 

the existing systems and enables transfer between them? 

Moderator: Shawn Salley 

10:50-11:05 Keynote Challenge 2  
Dylan Beaudette (Remote) 

11:05-11:15 2.1 A global numerical classification of the soil surface layer  
Alexandre M.J-C. Wadoux 

11:15-11:25 2.3 Similarities among soil profiles in representative soil-landscapes plots and its implications 
for soil types discrimination-a case study in the three river’s sources area in Qinghai Province, 
China.  
Xia Zhao 

11:25-11:30 2.4 What is isotic anyway? A Soil Taxonomy mineralogy class revisited  
Ryan Hodges 

11:30-11:45 Challenge 2 Discussion  

11:45-13:00 Lunch  
 
Challenge 3. In what ways can we use data-driven models to learn about pedological processes?  

Moderator: Kabindra Adhikari 

13:00-13:15 Keynote Challenge 3  
Gerard Heuvelink 

13:15-13:25 3.1 Assessing natural and human drivers on soil thickness variation using generalized additive 
models  
Yakun Zhang 

13:25-13:35 3.3 The determinants and regulation of surface soil bacterial and fungal biogeography in 
Australia  
Alexandre Wadoux on behalf of Budiman Minasny 

13:35-13:45 3.4 Biplots for understanding machine learning predictions in digital soil mapping  
Gerard Heuvelink 

13:45-14:00 Challenge 3 Discussion  
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14:00-14:20 Break  
 
Pedometrics in governmental, scientific, and commercial organizations  

Moderator: Kabindra Adhikari  

14:20-14:30 P2 Spatio-temporal soil information based on open science and multidisciplinary collaboration 
Taciara Zborowski Horst 

14:30-14:40 P4 Leveraging Legacy Data: The Evolution of Mid-Infrared Spectroscopy at the NRCS Soil 
and Plant Science Division  
Jonathan Maynard 

14:40-14:50 P5 Enhancement of Soil Data in the U.S. Forest Service Forest Inventory and Analysis 
Program  
John D. Shaw 

14:50-15:00 P6 Scaling Carbon Stock Measurement for Carbon Markets  
Sarah Coffman 

15:00-15:10 P7 Commercial soil carbon accounting: challenges and opportunities for practicing 
pedometricians  
Jason P. Ackerson 

15:10-15:25 Discussion  

15:25 Adjourn 

Tuesday 6th February 

Challenge 4. Can we measure soil properties more efficiently? 

9:00-9:15 Keynote Challenge 4  
Sabine Grunwald 

Challenge 4. Soil Spectroscopy  

Moderator: Alessandro Samuel Rosa 

9:15-9:25 4.1 Development of soil spectroscopy prediction models for the Western Highveld region, 
South Africa: Why we need local data.  
Anru-Louis Kock 

9:25-9:35 4.3 How can we be more assertive about soil spectroscopy predictions? The Open Soil 
Spectral Library study case  
José Lucas Safanelli 

9:35-9:45 4.4 Preserving Soil Data Privacy with SoilPrint: A Unique Soil Identification System for Soil 
Data Sharing  
Tegbaru B. Gobezie 
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9:45-9:55 4.5 Using Vis-NIR, MIR, and pXRF spectra for predicting soil physical and chemical 
properties - A comprehensive review  
Gafur Gozukara 

9:55-10:00 4.6 Spectral signature of soil horizons and soil orders in Wisconsin  
Malithi Vidushika Weerasekara 

10:00-10:05 4.8 Mesoscale Soil Spatial Heterogeneity Charachterization Using Laser-Induced Breakdown 
Spectroscopy  
Changwen Du 

10:05-10:10 4.10 Mapping soil particle fractions by training Digital Soil Mapping models with surrogate 
measurements obtained from laboratory and satellite Vis-NIR spectral data  
Malithi Vidushika Weerasekara 

10:10-10:15 4.11 In-Situ Soil Spectroscopy Application for Extractable Phosphorus Prediction for 
Precision Agriculture Purposes  
Katsutoshi Mizuta 

10:15-10:20 4.12 An objective test of the Open Soil Spectral Library service  
Kanchan Grover 

10:20-10:40 Soil Spectroscopy Discussion  

10:40-12:00 Lunch  
 
Challenge 4. Proximal Soil Sensing  

Moderator: Taciara Zborowski Horst 

12:00-12:10 4.13 Quantitative soil profile observations  
Alfred Hartemink 

12:10-12:20 4.14 Multi-sensor soil probe and machine learning modeling for predicting soil properties to 
revolutionize sustainable agriculture  
Sabine Grunwald 

12:20-12:30 4.15 Spectral inference at the edge  
José Padarian 

12:30-12:40 4.16 Going Deep: An assessment of artificial intelligence and deep learning techniques for 
image processing of soil surface and subsurface horizons  
Perseveranca Mungofa 

12:40-12:45 4.17 Testing different combinations of proximal soil sensors for high-resolution mapping of 
key soil fertility properties  
Jonas Schmidinger 

12:45-12:50 4.18 Evaluation of a novel, commercial, VisNIR probe for in-situ measurement of soil carbon 
stocks  
Jason P Ackerson 
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12:50-12:55 4.19 Predicting changes in soil nitrogen and phosphorus using nitrogen/phosphorus 
measurement sensors and machine learning  
Jae E. Yang 

12:55-13:00 4.20 Portable X-ray Fluorescence Spectrometry for Sensing Salinity and Sodicity in Glacial 
Northern Great Plains Soils  
Adam Devlin 

13:00-13:05 4.21 Effect of soil autocorrelational properties on regression model choice for mapping soil 
organic carbon in hyperspectral images  
Shayan Kabiri 

13:05-13:10 4.22 Application of computer vision semantic image segmentation and classification 
algorithms for processing of digital microscopic soil images acquired by a digital soil core 
sensor  
Perseveranca Mungofa 

13:10-13:15 4.23 Measurement of Soil Carbon Stocks In-Situ with Dual Wave Sensors  
Kristopher Osterloh 

13:15-13:20 4.24 Proposals for optimization in mapping electrical conductivity in sparse data through data 
fusion in irrigation zones: An application of spatial regression models  
Hugo Rodrigues 

13:20-13:40 Proximal Soil Sensing Discussion  

13:40-14:10 Break  

Challenge 4. Digital Soil Mapping  

Moderator: Richard Heck 

14:10-14:20 4.25 The benefits of using a reference sampling for mitigating the impact of legacy soil data 
errors on Digital Soil Mapping outputs.  
Philippe Lagacherie 

14:20-14:30 4.26 Seeking Validity in Soil Data  
Stephen Roecker 

14:30-14:40 4.27 Spatial pattern evaluation in comparing digital soil maps obtained with different methods: 
an important addition to pointwise metrics  
Giulio Genova 

14:40-14:50 4.28 Towards POLARIS v2: Improving Soil Properties Mapping Over the CONUS Using a 
New Hierarchical Geospatial Framework  
Chengcheng (Emma) Xu 

14:50-15:00 4.29 A metadata-focused harmonization workflow to generate high quality datasets for digital 
soil mapping and modeling: the Alaska Soil Data Bank project  
Nicolas A Jelinski 
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15:00-15:10 4.30 3-D Mapping of Soil Moisture Holding Capacity with Soil Depth Functions and Machine 
Learning Algorithms in a Tropical Sub-Catchment in Tanzania  
Jacob Kaingo 

15:10-15:15 4.31 Exploring extrapolation effects of random forest digital soil mapping: a case study in 
African countries  
Gerard Heuvelink on behalf of Fatemeh Hateffard 

15:15-15:20 4.32 National scale mapping of soil organic carbon stocks in Taiwan  
Chien-Hui Syu 

15:20-15:25 4.33 Digital mapping of Australian soil carbon stocks from inorganic carbon  
Wartini Ng 

15:25-15:30 4.34 Evaluating the Performance of a Topsoil Organic Carbon Monitoring System at 
Continental Scale: Regional Validation in Wallonia, Belgium  
Marmar Sabetizadeh 

15:30-15:35 4.35 Machine learning models do not provide higher accuracy models compared to ordinary 
kriging under high density soil observations  
Chien-Hui Syu 

15:35-15:40 4.37 Digital Mapping Of Al, Fe2O3, Nb, Tio2 And W In Mineralized Laterites In The 
Brazilian Amazon  
Niriele Bruno Rodrigues 

15:40-15:45 4.38 How can Google Earth Engine and Vis-NIR aid in the challenge of mapping alluvial soils 
in Tribal Nations  
Marcelo Mancini 

15:45-15:50 4.39 Distribution of heavy metals in the soils of conterminous USA and implications for food 
and environmental safety  
Kabindra Adhikari 

15:50-16:10 Digital Soil Mapping Discussion 

16:10 Adjourn   

17:00 – 19:00  Friendly games of soccer and/or flag football 
James B. Delamater Activity Center, 1600 Stewart St 
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Wednesday 7th February 

Challenge 5.   Can we develop workable techniques to derive predictions of soil characteristics at 
scales appropriate for modelling and decision making, by up- and downscaling 
observations in 3D space and time?  

Moderator: Kristopher Osterloh 

 

9:00-9:10 5.1 Gaussian process: A comparison with depth-harmonised approach - a case study of 
mapping soil constraints 

 Jie Wang 

9:10-9:20 5.2 Modelling soil organic carbon stock in space and time at multiple scales: Case study from 
Hungary  
Gábor Szatmári 

9:20-9:30 5.3 Dealing with missingness, truncation, and censoring in multi-source data to map soil 
organic carbon stocks  
Alessandro Samuel-Rosa 

9:30-9:40 5.4 Leveraging Remote Sensing, Soil Properties, And Ai Technologies For 
Nowcasting/Forecasting Soil Moisture In 3D Space And Time  
Sabine Grunwald 

9:40-9:50 5.5 Fine-Resolution Near-Real-Time Soil Moisture Mapping in Tasmania through Transfer 
Learning  
Jose Padarian on behalf of Budiman Minasny 

9:50-9:55 5.6 Spatio-Temporal Mapping Of Soil Organic Carbon Stock In Brazil  
Nícolas Augusto Rosin 

9:55-10:00 5.7 Mapping of soil indicators at national scale in Lithuania using the Soil Data Cube and 
Artificial Intelligence-driven Earth Observation analysis  
Nikiforos Samarinas 

10:00-10:15 Challenge 5 Discussion  

10:15-10:35 Break  

Challenge 7. How to recognize, quantify and map soil functionality?  

Moderator: Alfred Hartemink 

10:35-10:50 Challenge 7 Keynote  
Philippe Lagacherie 

10:50-11:00 7.1 Quantifying the potential and current state of European soils functions  
Alexandre M.J-C. Wadoux 

11:00-11:10 7.2 Identifying hotspots of polluted forest soils in the Czech Republic: comparison of various 
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pedometrical methods  
Luboš Borůvka 

11:10-11:20 7.3 3D Soil Hydraulic Database of Hungary at 100 m resolution (HU‐SoilHydroGrids)  
Gabor Szatmári on behalf of László Pásztor 

11:20-11:30 7.4 Concurrent Electromagnetic Induction Sensing of Magnetic Susceptibility and Electrical 
Conductivity for the Field Delineation of Soil Drainage Class  
Richard J Heck 

11:30-11:45 Challenge 7 Discussion  

11:45-12:05 Field Trip and Desert Project Overview Curtis Monger 

12:05-12:30 Pick up box lunch and load busses  

12:30-17:00 Field Tour #1: Soils and Landscapes of Desert Basins and River Valleys (Separate Guide)
  

Thursday 8th February 
Challenge 9. Can we find ways to express the uncertainty of predictions of soil properties or class 

allocations which are meaningful to the users of those predictions?  

Moderator: Jason Ackerson 

9:30-9:45 Keynote Challenge 9  
A-Xing Zhu 

9:45-9:55 9.1 Uncertainty of spatial averages and totals of soil property maps  
Gerard Heuvelink 

9:55-10:05 9.2 Quantifying Prediction Uncertainty Based on Third Law of Geography  
A-Xing Zhu 

10:05-10:15 9.4 Exploring land use planners' preferences about visualization of digital soil mapping 
products for informed decision-making under uncertainty  
Léa Courteille 

10:15-10:25 9.5 New evaluation criteria for digital soil mapping products from an user's point of view  
Philippe Lagacherie 

10:25-10:35 9.6 Evaluating On-Farm Functional Soil Variability: A Decision Support Framework  
Jonathan Maynard 

10:35-10:40 9.7 Using LandPKS algorithm to estimate the sensitivity of ecological site identification in 
response to uncertainties in soil observations  
Pedro Martinez 

10:40-10:45 9.8 Leveraging user feedback and normalized uncertainty maps to inform future updates to 
national soil property maps  
Travis W Nauman 
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10:45-10:50 9.9 Landscape uncertainty for DSM at continental scale  
David Rossiter on behalf of Laura Poggio 

10:50-11:05 Challenge 9 Discussion  

11:05-11:30 Pick up box lunch and load busses  

11:30-17:00 Field Trip #2: Soils and Landscapes of White Sands National Park 

17:00-22:00 Conference Dinner. New Mexico Farm and Ranch Museum  
 
Friday 9th February 

Challenge 10. How to quantify soil contributions to ecosystem services with a framework 
enabling both local and regional soil management?  

Moderator: Anru-Louis Kock 

9:30-9:45 Challenge 10 Keynote  
Cristine Morgan 

9:45-9:55 10.1 Quantifying the contribution of topsoil depth to ecosystem productivity across 
ecosystems and climatic regions  
Yakun Zhang 

9:55-10:05 10.2 Soil’s Hidden Value: Mapping Available Water Capacity as a Component of Natural 
Capital in Australia  
Nicolas Francos 

10:05-10:15 10.3 Producing and Utilizing a Digital Twin for a G.E.M Analysis to Improve Sustainable 
Farming  
Daniel J. Rooney 

10:15-10:25 10.4 The challenges of using references to interpret soil health indicators  
Cristine Morgan on behlaf of Daniel Liptzin 

10:25-10:30 10.5 Contextualizing soil health measurements from farm to continent  
Nathaniel Looker 

10:30-10:35 10.6 Quantifying Soil Health Through an Efficient Set of Indicators and Management Indices 
Minerva J. Dorantes 

10:35-10:40 10.7 Scaling soil health assessment in the Golden Horseshoe region of Ontario, Canada 
Jennifer A. Bower 

10:40-10:45 10.8 Spatial modeling of dynamic soil properties in agricultural landscapes. 
David Rossiter on behalf of Valentina Rubio 

10:45-10:50 10.9 Quantifying the Spatial Variability of Dynamic Soil Properties  
Sage Reuter 

https://www.nmfarmandranchmuseum.org/
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10:50-11:05 Challenge 10 Discussion  

11:05-11:25 Break  

11:25-12:10 Reflection and Future Work: Attendee Discussion 
Janis Boettinger 

12:10 Conference Adjourns
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Abstracts Monday 5th Feb 

 
Figure 2. Moonrise over a Typic Haplocalcid 
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1.1  
Continental Monitoring Soil Property Changes Under Human Pressure Using 
Pedogenon Mapping 
Quentin Styc1*, Mercedes Román Dobarco2, Ho Jun Jang1, Budiman Minasny1, Alex McBratney1. 
1School of Life and Environmental Sciences, The University of Sydney, Biomedical Building C81, 1 Central 
Avenue, Australian Technology Park, Eveleigh, Sydney, NSW 2015, Australia 
2Basque Centre for Climate Change (BC3) 48940 Leioa, Spain 

Soil properties are susceptible to changes due to human activities, particularly agricultural management. 
Traditional methods of monitoring these changes often lack the precision and granularity required for 
comprehensive understanding. 

This work uses the innovative approach of pedogenon mapping (Román Dobarco et al., 2021) over Australia, 
which leverages high-resolution environmental covariates as proxies of soil- forming factors, including relief, 
parent material, and climate. This method delineates 1370 pedogenons in Australia where soils share similar 
forming factors. To discern soil changes, we employed the concepts of genosoil and phenosoil. Genosoils 
represent soils evolving under natural conditions, such as woodlands and native vegetation, while phenosoils 
depict soils under human-induced pressures, like cropping areas and pastures. By integrating data estimating 
human activity impacts using the global Human Modification map (Theobald et al., 2020) and the Habitat 
Condition Assessment System map (Harwood et al., 2016b), we can distinguish between these soil types 
(genosoil or phenosoil) within a pedogenon (Román Dobarco et al., 2023). Zonal statistics were computed to 
highlight differences in soil pH and soil organic carbon from soil profiles observations between genosoils and 
phenosoils. 

Our findings indicate discernible changes in these properties, underscoring the impact of human activities on 
soil evolution. Pedogenon mapping, combined with the genosoil and phenosoil concept, offers a nuanced and 
precise tool for monitoring soil property changes due to human pressures. This approach holds promise for 
future research on and policy- making in sustainable land management. 

References 

Dobarco, M. R., Campusano, J. P., McBratney, A. B., Malone, B., & Minasny, B. (2023). Genosoil and 
phenosoil mapping in continental Australia is essential for soil security. Soil Security, 100108. 

Dobarco, M. R., McBratney, A., Minasny, B., & Malone, B. (2021). A modelling framework for pedogenon 
mapping. Geoderma, 393, 115012. 

Harwood, T. D., Donohue, R. J., Williams, K. J., Ferrier, S., McVicar, T. R., Newell, G., & White, 

M. (2016). Habitat Condition Assessment System: a new way to assess the condition of natural habitats for 
terrestrial biodiversity across whole regions using remote sensing data. Methods in Ecology and Evolution, 
7(9), 1050-1059 

Theobald, D. M., Kennedy, C., Chen, B., Oakleaf, J., Baruch-Mordo, S., & Kiesecker, J. (2020). Earth 
transformed: detailed mapping of global human modification from 1990 to 2017. Earth System Science Data, 
12(3), 1953-1972. 
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1.3  
Century-Long Quantification of Soil Loss in Eastern South Dakota Agricultural 
Fields 
Eli Halverson and Dr. Kristopher Osterloh South Dakota State University 

Agriculturally driven increases in soil loss remain a barrier to long term sustainable agro- ecosystems. It is 
difficult to accurately quantify soil loss over multidecade time periods due to a lack of useful legacy data. 
Utilizing historical soil survey descriptions of agricultural soils from the 1920’s and 1950’s in Southeastern 
South Dakota, we quantify soil loss over the last century. Although these are missing modern horizon 
nomenclature, they include marker features such as horizon depths, depth to carbonates, and depth to parent 
material. These descriptions were utilized to assess the approximate 100-year changes in soil horizon thickness 
to quantify the amount of soil lost over the 100-year period. Changes in depth to carbonates, horizon depths and 
boundaries, texture changes and contrast, and depth to parent material were used to quantify the range of soil 
loss and subsequent mixing of subsurface and surface soil horizons. The rates of soil loss were between 1.92-
3.53mm/year (26.11-48.85Mg/ha/year) which is comparable to studies that utilized shorter timescales. This 
study highlights the utility of legacy soil datasets as well as the importance of long-term trends in pedological 
modeling. 
 

1.4 
Modelling the effect of topographical position and precipitation on soil profile 
variation with Soilgen 
Tom Vanwalleghem, Vanesa García-Gamero, Adolfo Peña, Andrea Román-Sánchez, Peter A. Finke 

Department of Agronomy, University of Córdoba, Da Vinci building, Madrid km 396 Rd., 14071 Córdoba, 
Spain 

Department of Rural Engineering, Civil Constructions and Engineering Projects, University ofCórdoba, Da 
Vinci building, Madrid km 396 Rd., 14071 Córdoba, Spain. 

Department of Environment, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium. 

The sensitivity of chemical weathering to climatic and erosional forcing is well established at regional scales. 
However, soil formation is known to vary strongly along catenas where topography, hydrology, and vegetation 
cause differences in soil properties and possibly chemical weathering. This study applies the SoilGen model to 
evaluate the link between topographic position and hydrology with the chemical weathering of soil profiles on 
a north- south catena in southern Spain. 

Pedogenesis was measured and simulated in seven selected locations over a 20000-year period. A good 
correspondence between simulated and measured chemical depletion fraction (CDF) was obtained (R2=0.47). 
An important variation in CDF values along the catena was observed, although the position along the catena 
alone, nor by the slope gradient, explained this variation well. However, the hydrological variables explained 
the observed trends beter. A positive trend between CDF data and soil moisture and infiltration and a negative 
trend with water residence time was found. 

The model sensitivity was evaluated with a large precipitation gradient (200-1200 mm yr-1). While a marked 
depth gradient was obtained for CDF with precipitation up to 800 mm yr-1, a uniform depth distribution was 
obtained with precipitation above 800 mm yr-1. The basic pattern for the response of chemical weathering to 
precipitation is a unimodal curve, with a maximum around a mean annual precipitation value of 800 mm yr-1. 
Interestingly, this corroborates similar findings on the relation of other soil properties to precipitation and 
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should be explored in further research. 

 
2.1  
A global numerical classification of the soil surface layer 
Alexandre M.J.-C. Wadoux1,2, Alex B. McBratney2 
1LISAH, Université de Montpellier, INRAE, IRD, Institut Agro, Montpellier, France 
2Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, 
Australia 

The quest for a global soil classification system has been a long-standing challenge in soil science. There 
currently exists two, seemingly disjoint, global soil classification systems, the USDA Soil Taxonomy and the 
World Reference Base for Soil Resources, and many regional and national systems. While both systems are 
acknowledged as international, there remain various examples of their shortcoming for accounting of topsoil 
features, local applications and communication with established regional classification systems. This calls for a 
numerical soil classification that addresses these discrepancies and achieves harmonization with existing 
national systems. In this paper, we report on the development of a layer classification system-as opposed to the 
classification of soil profile entities, as a first step towards achieving a comprehensive global numerical soil 
classification not based on a priori defined classes. We implemented a modelling approach with a set of 
predicted key soil properties available globally for the soil surface layer with the same depth range of 0-5 cm. 
The set of properties were partitioned into a number of homogeneous and disjoint classes using the $k$-means 
clustering algorithm. Next, we investigated the pattern of variation of the clusters in association with the soil 
property map with principal component analysis. A three- component nomenclature system is derived in a 
transformed space of the class-specific centroids to account for the uneven distribution of the centroids in the 
principal component space. We show that it is possible to build a data-based objective numerical taxonomic 
classification of soil layers, and that existing sets of key soil properties, predicted separately, coalesce into 
identifiable clusters or classes and manifest discernible spatial and/or pedological patterns. This grouping of 
key soil properties to logical categories is a possible step to better define diagnostic horizon features and 
suggest new ones. The general-purpose map of soil surface layer classes of the world also has potential 
applications in assessing soil change and designing monitoring surveys. 
 
2.3  
Similarities among soil profiles in representative soil-landscapes plots and its 
implications for soil types discrimination-a case study in the three river’s sources 
area in Qinghai Province, China. 
XIA ZHAO 

Presenter’s email address: zhaoxia@qhnu.edu.cn; zhaoxia-qh@163.com 

The assumption of intrinsic consistency among soil types-properties-landscapes is the scientific basis of soil 
type discrimination and soil attribute prediction, however, the criteria for judging these relationships are far 
from consistent across existing systems (e.g., soil taxonomy in the U.S., soil genetic classification system in 
China, and the legend units of world soil map), therefore, the question of developing a quantitative and 
numerical global soil classification that unifies the existing systems and enables transfer between them has 
been listed one of the big ten challenges that confront pedometrics. 

The threes river’s (Yangtze River, Yellow River and Lantsang River) sources area in Qinghai Province owns 
unique soil forming environments of Qinghai-Tibet Plateau, therefore some endemic soil types have been 
developed here, including frigid frozen soil and cold calcic soil that formed in high elevation frozen 
environment; felty soil, meadow soil and boggy soil that developed in Alpine wet and cold grassland 

mailto:zhaoxia@qhnu.edu.cn
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environment; chernozem, kastanozems and aeolian soils that originated in Alpine arid desert environment. 

We have identified several representative soil-landscape patterns over years of soil profiles survey (see the 
diagram below), we found that local people have more soil-landscape perceptions than we have imaged, and 
there are hot desires for digital soil mapping products on critical soil properties that restricting soil utilization, 
including effective soil thickness, gravel concentration both above surface and inside soil profiles, calcium 
carbonate content along soil profiles, ice contents and grass mat thickness etc. 

So, the main idea of this work is to combine the quantitative rules of pedometric analysis with qualitative 
knowledge of local people by three steps, first is to calculate the similarities among soil profiles (including 
profile features and their environmental covariates) according to soil- landscape patterns, second is to 
transform the tactic knowledge of local people into qualitative rules, and finally integrate them into soil type 
identification criteria by referring to existing classifying system. The major outputs of this work will be a set of 
regional soil mapping products for both soil types and several important soil attributes that helpful to the 
rational utilization and protection of local soil resources. 
 

 
OFrigid Calcic Soil.  Aeolian Soil e Kastanozeas  • ()Boggy Soil  O;ray Forest Soi IO  Felty Soil e Meadow Soil O Dark Felty Soil 

        
 

 (m) 
 

 
1950   



23 
 

2.4  
What is isotic anyway? A Soil Taxonomy mineralogy class revisited 
Ryan Hodges USDA, NRCS 

The concept of isotic soils and it’s use in Soil Taxonomy at the family level was first introduced in 1996 to 
capture soils that did not meet the criteria to classify as having amorphic mineralogy or andic intergrades, but 
criteria exhibited soil properties akin to andic soils. These properties include having a colloidal fraction 
dominated by short-range-order mineralogy, higher than normal pH-dependent charge, and a greater ability to 
fix soluble P than other soils. Isotic soils key out at the family level under mineralogy class in sections C and D 
of Taxonomy, one step before mixed mineralogy. Some have argued that there is an apparent lack of 
interpretive value of the isotic versus the mixed mineralogy class, and that it is difficult to apply the class based 
on easily observed landscape/landform characteristics and correlation guides. The purpose of this study is to 
reassess not just the necessity of the isotic class, but to investigate the setting, context, and proxies for soil-
forming factors associated with isotic versus mixed mineralogy taxa. In doing so, we will determine if there is 
any practical significance to both its use and the properties used to classify the isotic class. The KSSL 
laboratory data and other landscape data will be extracted, and various statistical analyses performed to 
compare differences in organic carbon, phosphate retention, and selective dissolution data between the 
amorphic, isotic, mixed mineralogy classes. Correlation analyses will be completed to determine degree of 
association of measured properties to those used in classifying isotic soils. Multivariate statistics will be used 
to determine soil properties and required thresholds that would best bifurcate soils into the isotic and mixed 
mineralogy classes. Results of our assessment will showcase which soil properties—both those that are and are 
not currently used to classify isotic soils—appropriately reflect the classification of soils into the isotic 
mineralogy class and what observed field correlation guides support the separation of isotic from mixed 
mineralogy, if any. Additionally, we will address how an improved taxa system at the junction between isotic 
and mixed mineralogy would increase their interpretive value on land use and management. 
 
3.1  
Assessing natural and human drivers on soil thickness variation using generalized 
additive models 
Yakun Zhang1, Alfred E. Hartemink1, Tom Vanwalleghem2, Benito Roberto Bonfati3, Steven Moen4 
1University of Wisconsin-Madison, Department of Soil Science, FD Hole Soils Lab, 1525 Observatory Drive, 
Madison, WI, 53706, USA 
2University of Córdoba, Department of Agronomy, Da Vinci building, Ctra. Madrid km 396, 14071 Córdoba, 
Spain 
3State University of Minas Gerais, 700 Colorado Street, Passos, Minas Gerais, 37902-092, Brazil 
4University of Wisconsin-Madison, Department of Statistics, Medical Sciences Center, 1300 University 
Avenue, Madison, WI, 53706, USA 

Understanding changes in spatio-temporal paterns of soil thickness and their natural and anthropogenic driving 
factors are essential for earth system modeling and natural resource conservation. Here we compiled a long-
term (1950–2018) and large-scale (conterminous USA) topsoil (A horizon, n=37,712) and solum (n=22,409) 
thickness data. We fited generalized additive models (GAMs) to quantify the spatial distributions of soil 
thickness and the nonlinear relationship between soil and environmental variables and A horizon and solum 
thickness. The GAMs resulted in an R2 of 0.35 and 0.34 and Lin’s concordance correlation coefficient of 0.52 
and 0.52 for log-transformed A horizon and solum thickness respectively in the validation. The model 
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coefficients of GAMs explained either a positive or negative contribution of each environmental factor on soil 
thickness variation. We found that climate was associated with the spatial distribution of soil thickness. The A 
horizon and solum thickness displayed a strong longitudinal pattern which was correlated with soil moisture 
(r=0.49) and temperature (r=0.74), respectively. Elevation influenced solum thickness via soil temperature at 
the national scale. When selected chronosequences in land resource regions to quantify their temporal 
variations using simple linear regressions. Temporal changes of the thickness varied across different land 
resource regions, which were affected by topography, land use, and erosional processes. These results clearly 
elucidated the factors controlling the soil production and erosion at the national and regional scales and 
identified regions that require conservation practices to reduce further topsoil loss. 
 

3.3 
The determinants and regulation of surface soil bacterial and fungal biogeography 
in Australia 
Peipei Xue1, Budiman Minasny1, Alexandre M.J.-C. Wadoux1,2 , Mercedes Román Dobarco1, Alex McBratney1 
1The University of Sydney, Sydney, New South Wales, Australia 

Soil microorganisms are highly abundant and diverse, playing crucial roles in nutrient cycling, carbon 
sequestration, and soil structure regulation. However, understanding their distribution and the environmental 
factors influencing them at a continental scale remain a challenge due to their high density, diversity, and the 
need for molecular techniques to study them comprehensively. In this study, we investigate the determinants of 
soil bacterial and fungal distribution of the soil surface horizon across Australia using a comprehensive dataset of 
more than 1000 soil samples from diverse bioregions and soil types. 

Our findings highlight that the interplay between soil properties and climate factors stands out as the primary 
driver of microbial distribution at the continental level. Principal coordinate analysis reinforces the notion that 
soils sharing similar characteristics tend to exhibit similarity in the composition of bacterial and fungal 
communities. 

Leveraging these insights, we developed digital soil mapping models that establish associations between 
observed microbial abundances and environmental variables, allowing us to create continental maps of soil 
bacteria and fungi. These maps unveil microbial hotspots, such as the eastern coast, southeastern coast, and 
western coast, which are dominated by Proteobacteria and Acidobacteria. In the case of fungi, precipitation 
emerges as a dominant influence, with Ascomycota prevailing in the drier? central region. The detailed maps 
also indicate that some of the microbial hotspots are located in areas with high human pressure which may be 
vulnerable to change. 

The map can be instrumental for regional soil biodiversity assessments and for monitoring how microbial 
communities respond to global environmental changes. 
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3.4  
Biplots for understanding machine learning predictions in digital soil mapping 
Stephan van der Westhuizen1,2, Gerard B.M., Heuvelink2 Sugnet Lubbe1, Catherine E. Clarke3 
1 Department of Statistics and Actuarial Sciences, Stellenbosch University, South Africa 
2 Soil, Geography and Landscape, Wageningen University, the Netherlands 
3 Department of Soil Science, Stellenbosch University, South Africa 

Keywords: biplot, explainable machine learning, random forest, soil organic carbon, South Africa, XAI 

In digital soil mapping, machine learning models are often preferred to traditional statistical methods such as 
geostatistical models. The reason for this is that machine learning models can effectively capture complex 
relationships between soil properties and environmental covariates, leading to more accurate soil maps 
compared to traditional models. However, unlike traditional models, a notable drawback of machine learning 
models is that they are often referred to as “black-box” methods due to their limited ability to provide 
comprehensive interpretations for their predictions. 

Explainable machine learning, a rapidly growing field in machine learning literature, focuses on model- 
specific or model agnostic methods designed to understand predictions made by machine learning models 
either locally or globally. Popular model-agnostic methods include partial dependence plots (used for global 
interpretations), independent conditional expectation (local) curves, and Shapley values (local and global). 
These methods assume independence between covariates which is a very restrictive assumption. For cases 
where covariates are dependent, an alternative approach is the Accumulated Local Effect plot, which however 
is limited to depicting one or two covariates at a time. Another disadvantage of the above-mentioned methods is 
that no readily available goodness-of-fit metric is available. 

In this paper we propose the use of principal coordinate analysis biplots as a model-agnostic visualization 
approach for understanding the predictions made by a machine learning model for digital soil mapping. A 
biplot is a powerful visualization tool that is often used to seek patterns in multivariate data. A biplot would 
allow a user to investigate machine learning model predictions locally and globally, and does not require any 
assumptions (e.g., independence between covariates) about the data. There is also no limit to the number of 
covariates that can be viewed at a time. 

Furthermore, an analytically derived goodness-of-fit metric is provided which allows the user to evaluate the 
accuracy of the approximation. We present examples from a case study in South Africa in which soil organic 
carbon is mapped with a random forest model. Our findings show that biplots can provide meaningful 
interpretations for the soil organic carbon predictions and its relation with covariates where other explainable 
machine learning methods fail. 
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P2 
Spatio-temporal soil information based on open science and multidisciplinary 
collaboration 
Taciara Zborowski Horst1, Alessandro Samuel-Rosa1 
1 taciaraz@utfpr.edu.br; alessandrorosa@utpf.edu.br; Federal University of Technology-Paraná (UTFPR) - 
Brazil 

Digital soil mapping has played an essential role in generating global soil information at various scales. 
Mapping dynamic soil properties across large areas, however, has not been addressed due to its greater data 
requirements to encompass both spatial and temporal coverage. In this presentation, we will showcase how 
MapBiomas, a network formed by NGOs, universities, and technology startups, is addressing these challenges 
to deliver annual updates of soil property maps for Brazil. Employing large amounts of open field and satellite 
data, cloud computing, and machine learning, MapBiomas produced a series of maps of topsoil organic carbon 
(SOC) stocks of the Brazilian territory covering the period 1985-2021 with temporal and spatial resolutions of 
one year and 30 m, respectively. The series will be updated annually to show how the spatio-temporal 
dynamics of SOC stocks are linked to land cover and use, climate, and soil management. Such updates are 
only feasible due to the way the network is organized. First, MapBiomas covers the mapping of various 
themes, with working groups updating every year the series of annual maps of land cover and use, fire scars, 
water surface, and infrastructure among others. Second, a multidisciplinary team of experts is based at 
institutions across the Brazilian biomes. These experts interpret, choose, and process the existing 
environmental data proxies to best represent the processes linked to SOC changes in their biomes. 
Third, a community effort to retrieve, curate, standardize, and harmonize any existing field soil data collected 
by public and private organizations, making it immediately made available to the wider community via the 
Brazilian soil data repository (SoilData). Finally, the network maintains a transparent and accessible 
framework, with a regular agenda of outreach activities, encouraging open access to data, code, and results, 
thereby fostering data sharing, reproducibility, and reuse. Fostering community engagement and adopting open 
practices is key to enable the participation of the general public in providing data and assessing the quality of 
the data products (citizen science). It is our understanding that only through strong multidisciplinary 
networking, integrating the production of soil information in a broader framework, and adopting open 
practices, the community will be able to address demands by decision makers and soil managers. 
Keywords: MapBiomas; Open data; Land assessment; Soil organic carbon stock. 
 
P4  
Leveraging Legacy Data: The Evolution of Mid-Infrared Spectroscopy at the 
NRCS Soil and Plant Science Division 
Authors: Jonathan J. Maynard1*, Rich Ferguson1, Scarlett Murphy1, Cathy Seybold2, Andrea Williams1, 
Travis Waiser3, Dave Hoover1, and David Lindbo4 

1 USDA-NRCS, Soil and Plant Science Division (SPSD), National Soil Survey Center 2USDA-NRCS, SPSD, 
Soil Services and Information 
3USDA-NRCS, SPSD, South Central Region 4USDA-NRCS, SPSD, Headquarters 
*Presenting author 

Soil mid-infrared spectroscopy (MIR) has emerged as a highly effective and efficient technique for predicting 
key soil properties (e.g., clay, organic carbon, cation exchange capacity (CEC), etc.). With a background of 
evidence supporting its potential in soil survey applications, the Natural Resources Conservation Service 
(NRCS) Soil Plant and Science Division (SPSD) Kellogg Soil Survey Laboratory (KSSL) initiated the use of 
MIR as an additional method for internal laboratory quality control in 2011. The success of this initial work 
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prompted consideration for expanding MIR technology to NRCS field offices, leading to an initial pilot study 
in the Central Plains of the United States in 2017. To facilitate the transfer of MIR calibrations from KSSL to 
suitably equipped field offices, careful consideration was given to selecting appropriate sample processing and 
scanning technologies. This strategic approach ensured optimal model transfer and laid the foundation for 
successful implementation of MIR technology beyond the pilot stage, with current deployment of MIR 
technology in field offices stretching from Alaska to Puerto Rico. The KSSL has greatly expanded its MIR 
spectral data collection to capture broad compositional variability in both the United States and abroad, 
resulting in the establishment of the world’s largest open-source MIR spectral library, comprising spectra for 
over 84,000 soil samples (as of 2023, with many more to scan). By exploiting its vast archive of diverse soil 
samples and reference data, NRCS has also facilitated progressive, organized, and cooperative research and 
development with the global spectroscopy community. 
 
P5 
Enhancement of Soil Data in the U.S. Forest Service Forest Inventory and 
Analysis Program 
John D. Shaw1,* and Colby Brungard2 
1USDA Forest Service, Rocky Mountain research Station, 2New Mexico State University, Dept. of Plant and 
Environmental Sciences, *john.d.shaw@usda.gov 

The Forest Inventory and Analysis (FIA) program has been collecting data and reporting on the status and 
trends of the forests of the United States for almost 90 years. Over the decades, the FIA program has 
diversified in response to new questions and data needs. In the late 1990s, FIA implemented a suite of 
“indicator” protocols, which were transferred to FIA from an EPA program that was designed to monitor forest 
health. One component was soil sampling to 20cm, with the common chemical analyses being done for 
mineral soil and primarily C and N done for forest floor samples. In comparison to FIA data collected for 
vegetation, data produced by the soil sampling protocol has been underutilized. This was due to many factors, 
among which were the low sampling intensity (~1 soil plot per 44,500 ha) and the (unrealistic ?) expectation 
that the protocol would permit the evaluation of soil property changes on a 5-year plot revisit cycle. Given the 
high cost, low value return on the data, and impending budget shortages, collection of soil data ceased in most 
states between 2005 and 2007. However, the Rocky Mountain Research Station FIA program (RMRS-FIA), 
which covers AZ, CO, ID, MT, NV, NM, UT, and WY, took the opposite approach and revised its soil 
protocol to move toward the full sampling intensity (~1 plot per 2500 ha) that is used for forest vegetation and 
other attributes. In addition, RMRS-FIA, in partnership with New Mexico State University, has started to 
extend FIA soil data to make it more useful. For example, texture is now determined by particle size analysis, 
compared to only texture-by-feel done previously. Dry-end moisture release curves are being developed for all 
FIA mineral samples collected since 2000. In addition, the existing laboratory data and stored samples are 
being used to develop a spectral library for near-infrared analysis. The existing and additional soil data, 
combined with the higher sampling intensity and the fact that every soil sample comes from a location with 
continuous vegetation monitoring, should provide a rich dataset for analysis of forest soil properties in the 
Mountain West states. 
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P6 
Scaling Carbon Stock Measurement for Carbon Markets 
Sarah Coffman and Marissa Wiseman 

Yard Stick is actively working to meet the growing need for accurate and scalable carbon stock measurements 
for agricultural carbon markets. We want to enable measurement at a scale of millions of acres. This 
presentation will present Yard Stick’s path to scalability through our processes, software, and patented VisNIR 
technology. We will discuss how Yard Stick is creating efficiency at every step of the customer life cycle 
(scope, sample plan design, field work, lab data, and data return). Software solutions for sample plan design, 
field work execution, lab data review and stock reports will be described and displayed. The unique role that 
the Yard Stick VisNIR handheld probe plays in scaling C stock measurements will be intertwined throughout 
the content. 
 
P7 
Commercial soil carbon accounting: challenges and opportunities for practicing 
pedometricians 
Jason Ackerson, Ayush Guwali, Faye Smith, Matt Duncan, Cristine LS Morgan 

Recent interest in soil carbon sequestration as a tool to mitigate climate change has spurred the creation of a 
soil carbon accounting industry. Registration bodies such as Verra and The Climate Action Reserve have 
developed methodologies for commercial soil carbon developers to generate tradable soil carbon offsets and 
businesses have made substantial investments in developing and selling soil carbon offsets. This emerging soil 
carbon industry provides challenges and opportunities for pedometricins to work in conjunction with 
commercial partners to accurately quantify soil carbon sequestration on spatial large scales. In this 
presentation, we will discuss the partnership between The Soil Health Institute, a non-profit scientific 
organization, and Truterra a for-profit carbon developer. We will highlight key learnings and insights from 
this partnership including: 1) challenges in sample design and implementation with commercial partners, 2) 
limitations of pedometric tools in real-world applications, and 3) opportunities of novel pedometrics research. 
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Figure 3. Sunset on the Jornada Experimental Ranch 

4.1 
Development of soil spectroscopy prediction models for the Western Highveld 
region, South Africa: Why we need local data. 
Anru-Louis Kock a, George Van Zijl a and Dimakatso Ramphisa a 

a Unit for Environmental Sciences and Management, North-West University, Potchefstroom, North West, 
South Africa. 

Precision agriculture practises must overcome a special set of obstacles due to the spatial heterogeneity of 
South African soils. Traditional soil analysis methods are costly, restricting data availability for precision 
applications. Soil spectroscopy has recently been mentioned as a cheaper, more time effective alternative, but it 
requires accurate calibration algorithms, using local samples. This study evaluates the potential of Mid-
Infrared (MIR) reflectance spectroscopy to predict exchangeable base cations, pH (KCl), and phosphorus 
(Bray-1 P) in cultivated soils. Mid infrared spectra were obtained from samples, alongside measurements of pH 
(KCl), NH4Oac extractable exchangeable base cations, and Bray-1 P. Calibration algorithms were created 
using the Cubist, Partial Least Squares Regression (PLSR), and Random Forest (RF) machine learning 
algorithms to develop local prediction models. Additionally, a subset of spectra was also submitted to the 
newly developed global soil spectral database with prediction models – Open Soil spectral Library (OSSL) to 
obtain its predictions based on the spectra. The results demonstrate promising outcomes for local predictions at 
regional scale. 
Accurate predictions for pH, calcium (Ca), and magnesium (Mg), with ratio of performance to inter- quartile 
distance (RPIQ) values surpassing 2.13 were achieved. However, predictions for phosphorus (P), potassium 
(K), and sodium (Na) did not meet reliability requirements. The results from the OSSL predictions were 
consistently less accurate than the local models with the OSSL model overpredicting on all soil properties 
except pH (KCl) of which there is no prediction model. RPIQ values for all soil properties predicted with the 
OSSL models were < 1. This indicates the importance of contextual specificity when developing predictive 
tools for local sites as the prediction models calibrated with local samples outperformed global prediction 
models for the aforementioned soil properties. This regional focus enhances the accuracy of predictions, 
aligning them more closely with the unique characteristics of South African croplands. By prioritizing regional 
precision models, this work contributes to the evolution of agriculture in the North West province and, more 
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broadly, to the development of precision agriculture in South Africa. 
 
4.3 
How can we be more assertive about soil spectroscopy predictions? The Open Soil 
Spectral Library study case 
José Lucas Safanelli1, Jonathan Sanderman1, Robert Minarik2, Leandro Parente2, Tomislav Hengl2, Dellena 
Bloom3, Katherine Todd-Brown3 

1Woodwell Climate Research Center, Falmouth, MA, USA 2OpenGeoHub Foundation, Wageningen, the 
Netherlands 3University of Florida, Gainesville, FL, USA 

Diffuse reflectance spectroscopy is a technology that has been extensively investigated for estimating soil 
properties due to its appealing characteristics of being rapid and cost-effective. A research problem that is still 
under investigation in the field of soil spectroscopy is how we can be more assertive about the quality of the 
spectrally-based predictions and how they impact user applications. With the development of the Open Soil 
Spectral Library (OSSL) as part of the Soil Spectroscopy for Global Good initiative (SS4GG), we faced this 
challenge and proposed two interrelated solutions based on recent advances reported in the literature. The first 
is the uncertainty estimation via conformal prediction, a method that has gained attention in recent years due to 
its intuitive yet robust derivation of uncertainty for a predefined error probability. 

The second is more common in the chemometrics field and helps to flag potential outliers or underrepresented 
samples respective to the trained model, usually referred to as control chart, but here defined as trustworthiness 
flag. By using principal component analysis for controlling multicollinearity and for dimensionality reduction 
of the spectra, we calculate the residual unexplained variance (q-statistics) of new samples and compare it with 
a critical value estimated from the training set as part of the trustworthiness flag. We also implement 
uncertainty estimation via conformal prediction by leveraging the 10-fold cross validation predictions from an 
internal evaluation, resulting in two separate models for calculating prediction intervals: response and error 
models. This study will describe both methods implemented in the OSSL Engine with detailed results of their 
strengths and limitations. 

Keywords: chemometrics, uncertainty, conformal prediction, trustworthiness, q-statistics 
 
4.4  
Preserving Soil Data Privacy with SoilPrint: A Unique Soil Identification System 
for Soil Data Sharing 
Tegbaru B. Gobezie1* and Asim Biswas1 
1. School of Environmental Sciences, University of Guelph, Guelph, ON, Canada 

*Presenting author 

Soil is an indispensable resource with critical implications for various fields such as agriculture, environmental science, 
climate change, hydrology, ecology, and geoscience. Accurate and accessible soil data is crucial for making informed 
decisions. However, the sharing and harmonization of soil data present significant challenges, particularly due to the lack 
of a comprehensive identification system that ensures privacy, ownership, and stewardship in a federated data sharing 
framework. Moreover, the inherent heterogeneity of soil properties across space and time complicates the 
establishment of connections between soil profiles and their corresponding properties at specific locations. To 
overcome these challenges, we propose a novel and persistent soil data identifier called SoilPrint, which can be likened to a 
fingerprint. 
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SoilPrint utilizes a mathematical algorithm that effectively integrates the properties of soil profile layers (SPLP) with 
Geohash, offering an efficient solution. By incorporating SoilPrint, the process of data federation becomes seamless 
within a secure and distributed ledger, eliminating the need for complex data mapping or alignment. This approach 
ensures data privacy and ownership throughout the sharing process, addressing concerns associated with data 
management. To demonstrate the practical application of SoilPrint, we present a case study using soil data from Ontario, 
Canada. The results underscore the unique identification capabilities of SoilPrint for soil profiles and their 
associated properties, making it a promising tool for soil data management. SoilPrint facilitates data tracking, reuse, and 
analysis, enhancing the efficiency and effectiveness of soil-related research and decision-making processes. 

Key Words: Soil data, Unique Identification, SoilPrint, Federated 
 
4.5  
Using Vis-NIR, MIR, and pXRF spectra for predicting soil physical and chemical 
properties - A comprehensive review 
Gafur Gozukara1*, Alfred E. Hartemink2*, Yakun Zhang2, Jingyi Huang2, 

1Eskisehir Osmangazi University, Department of Soil Science and Plant Nutrition, Eskisehir, 26160, Türkiye. 
2University of Wisconsin-Madison, Department of Soil Science, FD Hole Soils Lab, 1525 Observatory Drive, 
Madison, WI, 53706, USA. 

*Corresponding e-mail: ggozukara@ogu.edu.tr, hartemink@wisc.edu 

We reviewed 305 published papers that used Vis-NIR, MIR, and pXRF spectra based for predicting soil 
properties. The objectives of this review were to compare the prediction accuracy using the extracted 
coefficient of determination (R2) values of Vis-NIR, MIR, and pXRF spectra, and to understand which factors 
impact characterization and prediction accuracy. The results demonstrated that spectral prediction papers 
increased exponentially from 2001 to 2022, and that much work has been conducted in China, USA, and Brazil. 
Approximately 44% of papers focused on the prediction of SOC using Vis-NIR spectra. The partial least 
square regression was most widely used. Many papers focused on the prediction performance in the topsoil 
(<40 cm) and Alfisols, Inceptisols, and Entisols using Vis-NIR, MIR, and pXRF spectra. The prediction 
accuracy of all soil properties was affected by soil type, depth, horizon, preprocessing methods, spectral range, 
and type of the prediction models (i.e., machine and deep learning). We recommend MIR spectra to obtain the 
highest prediction accuracy for sand, clay, total nitrogen (TN), total carbon (TC), inorganic carbon (SIC), 
organic carbon (SOC), organic matter (SOM), cation exchange capacity (CEC), and pH. 

Keywords: Proximal soil sensors, soil spectral information, predictive models, soil pedogenesis 
 
4.6  
Spectral signature of soil horizons and soil orders in Wisconsin 
Malithi V. Weerasekara, Alfred E. Hartemink, Yakun Zhang 

University of Wisconsin–Madison, Department of Soil Science, FD Hole Soils Lab, 1525 Observatory Drive, 
Madison, WI 53706, USA 

We used MIR spectra to classify soil horizons and soil orders from a dataset comprising 99 pedons and 321 
samples collected from genetic horizons across five soil orders (Alfisols, Entisols, Mollisols, Spodosols, and 
Histosols). The MIR spectra (4000 to 600 cm-1) and soil properties (soil organic carbon, pH, texture, Fe, Si) 
were measured. We used random forest model to classify five master horizons (O, A, E, B, C), three B 
horizons (Bs, Bt, Bw) and soil orders. Soil master horizons and B horizons had prediction accuracies of 0.83 
and 0.94, respectively, while soil orders had an accuracy of 0.79 in the validation. Absorption peaks of MIR 
are a result of fundamental molecular vibrations, which can distinguish soils with different organic and mineral 
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compounds. Organic soils exhibited unique absorption characteristics distinct from those of mineral soils at 
3,695 cm-1 and 3,620 cm-1. The random forest model accurately distinguished the O horizon with a precision 
of 100%. In addition, the spectra of Bs horizons and topsoil (average of O and A horizon) of Spodosols were 
comparable to the O horizon and made them easily identifiable using the spectral curve. The distinctions 
between soil horizons, soil orders and their spectral features were related to the soil physical and chemical 
properties. The C horizons had the highest sand content (mean = 86%) and stronger absorption peaks in 2000 –
1,650 cm-1. Spodosols and Entisols, which have high sand content, displayed these peaks, which enabled 
distinguishing them from other soil orders. The C horizon had the highest pH (mean 6.1) and showed a spectral 
peak at 2,517cm-1 representing CaCO3 availability whereas the E horizon which has the lowest pH (mean = 
5.3) showed the lowest absorbance at the same spectral range. Our results show the potential of soil MIR 
spectra for accurate soil horizon and order delineation, particularly for distinguishingly different soils. 

 
4.8  
Mesoscale Soil Spatial Heterogeneity Characterization Using Laser-Induced 
Breakdown Spectroscopy 
Fei Ma1, Changwen Du1,2,*, Zhou Jianmin1 

1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of 
Sciences, Nanjing 210008, China 
2University of Chinese Academy of Sciences, Beijing 100049, China 

Soil heterogeneity studies increasingly require approaches to describe soil composition and features from 
macroscale to microscale with more visualization methods. In this study, the laser induced breakdown 
spectroscopy (LIBS) technique was used to generate microscale ablation craters to investigate soil variation in 
various soil samples at the mesoscale level. The LIBS spectra of four types of agricultural soils pellets (Fluvo-
aquic soil, paddy soil, red soil, and black soil in four provinces in China) having different soil organic matter 
contents were collected and there were 52 shot spots on the surface of each sample, respectively. The elements 
Si, Al, Ca, Cu, Ti, Mo, Fe, Ba, Mg, Na, Li, K, H, and O were identified; however, their emission line 
intensities varied in different soil types. The first three principal component analysis (PCA) loading values and 
scores reflected the correlation of elements in each soil sample and the first 10 positions that contained most 
PC1 scores were marked separately. The results showed that the Fe, Ti, Al, Mo, and O loading values were 
positive with soil organic matter (SOM) content, whereas Ca and Na were negative in Fluvo-aquic soil 
samples; Al, Mo, Ti, Li, and O were positive with SOM contents, while Ca and Mg showed the opposite 
changes in paddy soil samples. Fe, Mo, and Ti decreased with the decrease in the SOM contents in red soil 
samples. Ti, Al, Mg, Ca, Fe, and K showed strong correlations loading values in the black soil samples. 
Finally, the Red-Green-Blue composite displayed visualized soil heterogeneity maps. The soil sample maps 
indicated high SOM content in the Fluvo-aquic soil, paddy soil, and red soil were with higher variability. For 
the Fluvo-aquic soil with medium SOM content, Ca was abundant on the pellet surface. Ti, Mo, and Cu were 
richer on the surface of paddy soil with medium SOM content. Al, Ca, Ti, and Na were abundant on black soil 
pellet with low SOM content. Moreover, the red soil types displayed highest heterogeneity in all four types. 
These results may help extend the utilization of spectral techniques for soil heterogeneity at the mesoscale 
level for various soil types. 

Keyword: Laser induced breakdown spectroscopy, Mesoscale soil heterogeneity, Principal component analysis, 
Kriging interpolation, RGB composite 
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4.10  
Mapping soil particle fractions by training Digital Soil Mapping models with 
surrogate measurements obtained from laboratory and satellite Vis-NIR spectral 
data. 
Weerasekara1,2 M., Lagacherie2 P., Dharumarajan3 S., C. Gomez2,4 

1University of Wisconsin-Madison, Department of Soil Science, 1525 Observatory Drive, Madison, WI 53706, 
USA 
2LISAH, University Montpellier, IRD, INRAE, Institut Agro Montpellier, 34060 Occitanie Montpellier, France 
3ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre Bangalore-560024, India 
4Indo-French Cell for Water Sciences, IRD, Indian Institute of Science, Bangalore-560012, India Digital Soil  

Mapping (DSM) is an excellent method for spatial soil prediction and is well suited for the growing appetite in 
spatial soil information. Due to the costly expense of acquiring conventional soil data, a lack of soil inputs is a 
limiting factor in Digital Soil Mapping (DSM). Laboratory Visible and near-infrared (Vis- NIR, 400–2500 nm) 
spectroscopic data and Sentinel-2 (S2) satellite data are promising alternatives for predicting soil properties, 
and these surrogate data can enhance spatial samplings. In this study, both laboratory Vis-NIR data and S2 data 
were utilized independently to predict soil data and then complement conventional soil data for the 
optimization of DSM models. Subsequently, these models underwent testing for sand, silt, and clay mapping. 
The results demonstrate that adopting few soil properties data predicted with high accuracy by laboratory Vis-
NIR spectra as surrogate data did not significantly improve the DSM model performance. Conversely, using 
many soil properties data predicted with modest accuracy by S2 data improved the DSM model performances 
for sand and clay. None of the DSM models could predict silt accurately due to its low variation across the 
study area. S2 based model for predicting sand content performed best with R²val, RMSEval and MEC of 0.62, 
9.35 % and 0.61, respectively. Finally, the limited spatial density of soil properties data predicted by laboratory 
Vis- NIR data hindered local spatial variation capture, while soil properties data predicted by Sentinel- 2 data 
significantly improved predictions despite their larger uncertainty. High-density soil dataset improved 
performance, resulting in markedly more accurate results. The abundance of S2 data at high frequencies holds 
the potential to propel the DSM community toward its objective of refining existing soil maps. 
 
4.11 
In-Situ Soil Spectroscopy Application for Extractable Phosphorus Prediction for 
Precision Agriculture Purposes 
Katsutoshi Mizuta Ohio Wesleyan University 
Soil degradation resulting from excessive phosphorus fertilizer applications poses a significant threat to food 
security. To optimize fertilizer application, it is crucial to understand the spatial heterogeneity of soil 
phosphorus in farm fields. However, traditional soil sampling and chemical analysis methods are expensive, 
labor-intensive, and time- consuming, often leading to over or under-application of fertilizers by farmers. 
As an alternative, researchers have explored spectroscopy technology. Some studies explored the use of soil 
spectrum to predict extractable soil phosphorus (Ext-P); however, many of the predictive models developed are 
still driven by data collected from a small scale (<20ha) field unlike soil carbon studies. More evidence is 
necessary to determine the necessary prediction accuracy for achieving the environmentally, agronomically, 
and economically optimal site-specific fertilizer application. Therefore, the objective of this paper is to 
establish spectral prediction models for soil Ext-P and assess their usefulness in phosphorus management. 
Sampling locations were determined using a one-acre and four-acre grid method, resulting in 513 and 144 
locations, respectively. Soil samples were collected from seven Oregon farm fields in 2022 fall and analyzed 
for Ext-P using the Mehlich-3 extraction method. Each sample was scanned using visible-near- infrared 
spectroscopy in the spectral range of 350–2500nm. Satellite imagery from previous years was also collected to 
define yield-based management zones (MZ) within the fields. The accuracy of soil spectroscopy in predicting 
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Ext-P was evaluated by comparing it with laboratory-measured Ext-P. Geospatial models were used to 
generate maps based on both laboratory-measured and spectrum-based predicted Ext-P, which were then 
overlaid with the MZ map. Preliminary results indicate that the soil spectroscopy approach has the potential to 
effectively identifies yield-limiting zones associated with Ext-P. Detailed nutrient mapping can assist farmers 
in reducing excessive fertilizer use, saving costs, and mitigating P-related environmental pollution. Further 
research is needed to explore calibration models that improve prediction accuracy and optimize farmers 
productivity by using the spectral models specifically tailored for the yield-limiting zones in their fields. 
 
4.12 
An objective test of the Open Soil Spectral Library service 
Kanchan Grover and Colby Brungard 

New Mexico State University, Las Cruces, NM, USA 

The promise of soil spectroscopy is the replacement of laborious and costly wet chemistry analytical methods 
with rapid and low-cost spectral analysis regardless of the soil type or geographic location. Early research 
demonstrated the ability of soil spectroscopy to produce accurate and precise analytical results if the spectra 
under investigation closely matched spectra from a geographically-specific spectral library. This led to the 
development of large spectral libraries and the development of internet-based spectral modeling capabilities to 
handle large and diverse spectral libraries. The Open Soil Spectral Library (OSSL) is an example of an on-line 
spectral modeling service built on top of large soil spectral libraries. This research investigates the accuracy of 
the OSSL for predicting analytical results from the North American Proficiency Testing (NAPT) program. 
NAPT furnishes analytical laboratories with blind and double-blind soil surface samples from different soil 
types across the conterminous USA. Each participating laboratory returns their analytical results to the NAPT 
program which then publishes the average test results. Thus, NAPT represents an exceptionally robust, and 
geographically diverse dataset of analytical results.  
This research used 325 NAPT soil samples to evaluate the precision and accuracy of OSSL Midinfrared (MIR) 
tools for predicting 27 soil properties: Total Nitrogen, Total, Organic, and Inorganic Carbon, Cation Exchange 
Capacity (displacement) Clay, Sand, Silt, Electrical Conductivity (1:2), pH (1:1), pH (1:2) 0.01M CaCl2, and 
Extractable K, Ca, Mg, Na, Al, Fe, Mn, Fe, Cu, and B 

NAPT soil spectra were measured using a Bruker Invenio-R HTS-XT l and uploaded to OSSL engine v1.2. 
Results show varying degrees of prediction accuracy across different soil properties. Total carbon, total 
nitrogen (N), total sand as well as cation exchange capacity (CEC), were predicted with high accuracy.  Silt, 
and calcium extractable using ammonium acetate were moderately well-predicted, demonstrating an acceptable 
level of accuracy. However, soil pH (both in water and CaCl2), Carbonates, and Clay showed a marginal level 
of acceptability. The Mehlich 3 extractable elements: K, Mg, Fe, Cu, Ca, B, Na, Mn Al were not predicted 
well. Likewise, Ammonium acetate extractable elements; Na, K, Mg were poorly predicted. Electrical 
conductivity (1:2) and Aluminum extractable KCl as well as phosphorus extractable Bray 1, did not predict 
well. 
 
4.13 
Quantitative Soil Profile Observations 
Alfred E. Hartemink, Jingyi Huang & Yakun Zhang 

University of Wisconsin-Madison, Department of Soil Science, 1525 Observatory Drive, Madison Wi 53711, 
USA 

Understanding the earth’s soil mantel has advanced through countless observations, some with depth, many 
across large areas. Soil observations have been fed into theory and models, whereas some theory has been 
formed from observations. The triangular relationship between soils, landform, and land use sometimes across 
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large areas (climatic or parent material gradients) is often a driver for contemporary soil studies. Much 
attention is given to sampling schemes, analytical techniques such as spectral pedology, and spatial prediction 
methods that have matured in the last few years. Observations with depth and across a soil profile wall have 
advanced from 1-D to 2-D using proximal sensing techniques and through image analysis methods. Soil 
horizon delineation methods have improved using cluster analysis of proximally sensed data sourced from vis-
NIR or XRF spectroscopy, or digital images. Also, 1-D continuous depth functions and 2-D soil profile maps 
have been generated to visualize and quantify soil profile variations. Sampling schemes have been established 
for quantifying soil profile variation and reducing sampling effort. Sensor data fusion methods can quantify the 
soil profile attributes, and guidelines should be developed for routine quantitative and analytical methods of 
soil profile observations. 
 
4.14 
Multi-sensor soil probe and machine learning modeling for predicting soil 
properties to revolutionize sustainable agriculture 
Sabine Grunwald et al. 

This study introduces a data-driven, multi-sensor digital soil mapping approach to assess soil health for 
precision agricultural management. Our ATV-mounted Digital Soil Core (DSC) system contains seven 
different sensors including sleeve friction, tip force, dielectric permittivity, electrical resistivity, soil imagery, 
acoustics, and visible and near-infrared spectroscopy. These sensors have been integrated into a penetrometer 
system developed by LandScan to sense soil characteristics at high spatial resolution (mm scale) along in-situ 
soil profiles up to a depth of 120 cm. The sensor data collected with the DSC are integrated into a data cube 
providing vertical high-density knowledge associated with physical-physical- chemical-biological soil 
conditions. In contrast, soil samples derived from soil cores for lab-based soil analytics are bound by 
substantially coarser spatial resolution and multiple compounding errors. We investigated the effects of 
mismatched scale between high-resolution proximal sensor data and coarser resolution soil lab measurements 
to develop soil prediction models. Our case study was conducted in central California in soils used for almond 
production. We collected multi-sensor data with the DSC and spatially co-located soil cores that were sliced 
into narrow horizons for lab-based soil measurements (for example soil organic carbon, texture, B, Ca, Cu, Zn, 
pH). Partial Least Squares Regression (PLSR) cross- validation was used to compare results testing four data 
integration methods. Method A reduced the high- resolution sensor data to discrete values paired with horizon-
based soil lab measurements. Method B used stochastic distributions of sensor data paired with horizon-based 
soil lab measurements. Method C allocated the same soil analytical data to each one of the high-resolution 
multi-sensor data within a horizon. Method D linked the high-density multi-sensor soil data directly to crop 
responses (crop performance and behavior metrics) bypassing costly laboratory soil analysis. Overall, the soil 
models derived from Method C outperformed Method A and B. Soil predictions derived using Method D were 
most cost-effective and practical to assess soil-crop relationships and is well suited for industrial-scale 
precision agriculture applications. Method D represents a paradigm shift from conventional methods of soil 
property prediction using laboratory or other subjective and error-prone approaches and is not directly 
comparable to the other methods. 
 
4.15 
Spectral inference at the edge 
José Padarian*, Budiman Minasny, Alex McBratney 

Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, New 
South Wales, Australia 

The use of soil infrared spectroscopy has been considered as a viable technique to acquire soil information for 
soil monitoring, in an effort to complement or replace soil laboratory analyses. The combination of large soil 
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spectral databases and advances in modelling techniques have made predictive spectral modelling one of the 
main applications of machine learning in soil sciences. Notably, advanced machine learning models and 
training techniques based on neural networks have shown great potential, considerably outperforming 
traditional methods such as partial least-squares regression, cubist and random forest. In recent years, 
developments in sensor manufacturing have led to the availability of more portable and accessible near infrared 
spectrometers which have shown potential to predict several soil properties, including organic carbon. These 
instruments are usually part of a closed infrastructure with complex interactions with remote servers, 
associated data privacy issues, model development restrained by vendors, programmed obsolescence, etc. 
Inference “at the edge” allows the use of models directly stored in low-power consumption devices, providing 
extra portability. Combined with an open-source software ecosystem, it solves the aforementioned problems. 
Here, we present some of the of the challenges of using deep learning soil spectral models in low-power 
hardware, including techniques to reduce model size without affecting performance, improve latency and 
reduce power consumption. 
 
4.16 
Going Deep: An assessment of artificial intelligence and deep learning techniques 
for image processing of soil surface and subsurface horizons. 
Perseveranca Mungofa1, Stephan Mantel2, Jorge Samuel Mendes de Jesus2, Sabine Grunwald1, Arnold 
Schumann1 

University of Florida, Soil, Water, and Ecosystem Sciences1. International Soil Reference and Information 
Centre (ISRIC) – World Soil Information 

Traditionally, analysis and modeling of soil properties has received considerable attention, mostly accounting 
for the surface horizon due to the agricultural importance of soils. However, a number of research studies have 
showcased the importance of soil information at down to 500 cm for soil carbon accounting and other relevant 
variables for agricultural and environmental sustainability. Known challenges in soil assessment are the 
adequate sampling density and frequency, while considering the complexity of the labor-intense standard 
laboratory methods. 

In this research, a new approach for analysis of soil samples is proposed using digital images of soils at the 
profile scale at distinct horizon and profile depths. Artificial intelligence (AI) and deep learning (DL) 
algorithms were used as a method for feature extraction and data analysis. Two datasets of soil images were 
used: low resolution RGB imagery acquired from various photo galleries of the United States Department of 
Agriculture (USDA) and the internet (N = 397); and high resolution RGB imagery from the International Soil 
Reference and Information Centre (ISRIC) World Soil Reference Monolith Collection (N=853). Samples were 
analyzed using AI DL algorithms, including image generative models for image data augmentation (Generative 
Adversarial Networks (GANs), and Diffusion-based models); image segmentation models for horizon and 
feature segmentation; convolutional neural networks for image classification and prediction of soil properties 
with linear regression (CNN-regression). 
 
4.17 
Testing different combinations of proximal soil sensors for high-resolution 
mapping of key soil fertility properties 
Jonas Schmidinger Jonas.Schmidinger@uni-osnabrueck.de Universität Osnabrück 
Up to now, there is no single proximal soil sensor (PSS) which is capable of predicting multiple key soil 
properties with high accuracy. Fusing multiple PSSs can address this issue, as different sensors ideally provide 
complementary information about soil characteristics. However, not all PSSs benefit from synergetic effects 
when fused. The accuracy of predictions may even deteriorate when the data from the combined PSSs mainly 
consists of redundant information or when the PSSs fail to generate predictors that are meaningfully related to 

mailto:Jonas.Schmidinger@uni-osnabrueck.de


37 
 

the target soil property. For this reason, we aim to identify robust and capable PSS combinations for predicting 
multiple key soil properties. In a case study, eight state-of-the- art PSSs were deployed along a two-hectare 
transect of an agricultural field: near-infrared spectroscopy, laser-induced breakdown spectroscopy, Raman 
spectroscopy, apparent electrical conductivity, gamma- ray spectroscopy, capacitive soil moisture, ion-
selective electrodes for pH and X-ray fluorescence spectroscopy. Using a cubist model, we exhaustively tested 
the predictive capability of every possible PSS combination when fusing one to five different PSSs. 
Additionally, we investigated how fusing bare soil multi-spectral remote sensing (RS) data from Sentinel-2 
affects different PSS combinations. The target soil properties were pH, soil moisture content, soil organic 
carbon and plant available potassium, magnesium as well as phosphorus. In an analysis using the root-mean-
square error (RMSE) and Nash– Sutcliffe model efficiency coefficient (MEC) for evaluation, we observed that 
fusing more PSSs considerably increased prediction accuracy over the given set of target soil properties. The 
magnitude of the improvement varied among the different target soil properties. While some PSSs were 
moderately related to many different soil properties, other PSSs exhibited strong sensitivity to one specific soil 
property. Overall, there was no PSS combination that clearly outperformed the other set of combinations as 
various sets of PSSs led to rather accurate predictions. We also observed that the addition of RS mostly had a 
positive influence when using only a single- or a few PSSs. Yet, not all PSSs benefited from synergetic effects 
with RS data. 
 
4.18 
Evaluation of a novel, commercial, VisNIR probe for in-situ measurement of soil 
carbon stocks. 
Jason Ackerson, Ayush Guwali, Marissa Wiseman, Chris Tolles, Kevin Meisner, Cristine Morgan. 

Visible near infrared spectroscopy has been used for many years to measure soil properties including soil 
carbon content. While several researchers have utilized in situ spectroscopy for soil analysis, existing VisNIR 
spectrometers have several shortcomings for application in the field. Existing commercial or custom in situ 
VisNIR probes require custom foreoptics and heavy, hydraulic soil sampling machines to operate. In this 
study, we evaluate the effectiveness of a commercial, handheld VisNIR probe developed by Yardstick PBC. 
The probe overcomes many of the shortcomings of previous in situ VisNIR tools in that it is easily deployed by 
a single person without the necessity of heavy equipment and can rapidly collect high-resolution VisNIR data. 
This study demonstrates the viability of the Yardstick probe to measure soil carbon stocks accurately and cost-
effectively providing new capability for high-resolution soil measurement and monitoring. 
 
4.19 
Predicting changes in soil nitrogen and phosphorus using nitrogen/phosphorus 
measurement sensors and machine learning 
Kyoung Jae Lim, Jae E. Yang* 

Kangwon National University, Chuncheon 24341, Republic of Korea 

In order to measure the soil properties contained within the soil, each component is chemically separated from 
the soil and measured. This method has the disadvantage of requiring time and manpower to measure nitrogen 
and phosphorus in the soil. Recently, various research using sensors has been conducted. However, research on 
sensors that measure nitrogen and phosphorus in soil is insufficient. In addition, these sensors do not display 
the type or unit of nitrogen and phosphorus being measured, limitation the in measuring accurate phosphorus 
and nitrogen values. In this study, to overcome these limitations, the sensor was calibrated using soil and 
nitrogen standard solutions from the test site. During the sensor calibrating process, a regression equation was 
calculated. Based on the regression equation, changes in nitrogen and phosphorus in the test field from August 
to September 2022 were analyzed. Furthermore, the previously calculated regression equation was learned 
through machine learning, which has recently been used worldwide in various fields such as data regression 
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analysis, image recognition, and natural language processing. 

The machine learning algorithms used for learning in this study are decision tree (DT), random forest (RF), 
gradient boost (GB), extreme gradient boost (XGB), deep neural network (DNN), and long short- term 
memory (LSTM). Changes in nitrogen and phosphorus at the test site were predicted using the developed 
machine learning model. The predictive results showed a high correlation, confirming that it is possible to 
predict nitrogen and phosphorus in the soil using sensors in the field 
 
4.20 
Portable X-ray Fluorescence Spectrometry for Sensing Salinity and Sodicity in 
Glacial Northern Great Plains Soils. 
Adam Devlin, Kristopher Osterloh, PhD, South Dakota State University, adam.devlin@sdstate.edu 

Saline and sodic soils are an increasing concern across the Northern Great Plains (NGP) due to overlapping 
factors of climate change and land management that area drawing geologically derived salts to the land surface. 
Traditional laboratory assessments such as electrical conductivity (EC) and sodium absorption ratio (SAR) can 
be time consumptive and expensive. 

Importantly, they do not discriminate the type of salts causing salinity or dispersion. This has led to the desire 
for more rapid, accurate measurement alternatives. Portable X-ray fluorescence spectrometry (PXRF) may be a 
viable proximal sensing alternative, as it is able to provide accurate elemental data in minutes under field or 
laboratory conditions and can directly quantify salinity-associated elements like Ca, Mg, and S. PXRF paired 
with predictive models has proven to be useful for a diverse range of soil applications such as prediction of 
taxa, parent material, horizonation, texture, cation exchange capacity, fertility, contamination, and salinity. 
This study assessed the viability of PXRF elemental data from lab-prepped glacial till soils for predicting EC. 
Multiple liner regression (R2 = 0.6833, RMSE = 0.5836), random forest (R2 = 0.8619, RMSE = 0.3881), and 
cubist (R2 = 0.8736, RMSE = 0.3814) models were then developed through 10-fold cross validation of a 33- 
element suite. 
 
4.21 
Effect of soil autocorrelational properties on regression model choice for mapping 
soil organic carbon in hyperspectral images 
S. Kabiri1, S.M. O’Rourke1 
1UCD School of Biosystems & Food Engineering, University College Dublin, Belfield, Dublin, Ireland. 

Modelling and mapping soil organic carbon (SOC) content and other soil properties from high- resolution 
hyperspectral images presents the opportunity to study carbon distribution in the soil profile under different 
management scenarios. Existing studies on soil hyperspectral imaging often use advanced machine learning 
methods selected to capture non-linear relationships, however issues specific to soil data such as inherent 
autocorrelation of SOC and other soil properties are not accounted for. In this study the procedure for 
regression model selection for SOC modelling in soil core hyperspectral images was investigated. Nine intact 1 
m soil cores and their corresponding pressed pellets were scanned by a short-wave infrared (SWIR) 
hyperspectral sensor, and reference SOC was measured for each 10 cm depth. Standard cross- validation and 
two spatial cross-validation methods were used to determine which one of three regression methods, Partial 
Least Squares Regression (PLSR), Gaussian Process Regression (GPR) and Neural Network Regression 
(NNR) was suitable for modelling soil organic carbon from hyperspectral data. All three models achieved 
equal performance for standard cross validation and core-out validation (R2~0.95), but GPR failed (R2=0) and 
NNR performed worse (R2~0.49) than PLSR (R2=0.64) for depth-out validation. This highlights that 
generalization of SOC models for soil cores with hyperspectral images can be impacted by autocorrelation of 
SOC along the depth axis. The modelling exercise was repeated to model SOC for scanned soil pellets and 
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whilst the results remained the same for standard and core-out validation, for depth- out validation GPR failed 
(R2=0), and NNR’s performance deteriorated (R2=0.32), but the performance for PLSR improved (R2 = 0.78). 
These results show that the autocorrelation of SOC along soil depth might be captured by soil texture, and the 
relationship between SOC and soil texture is partially neutralized in the pelleting process. The overall results of 
this study demonstrate that PLSR is a superior regression technique when the autocorrelation of SOC is 
considered and is more likely to capture actual chemical properties in soil cores compared to GPR and NNR 
regression models. 
 
4.22 
Application of computer vision semantic image segmentation and classification 
algorithms for processing of digital microscopic soil images acquired by a digital 
soil core sensor 
Authors: Perseverança Mungofa1, Daniel Rooney2, Nicolas Guries2, Woody Wallace2, Arnold Schuman1, and 
Sabine Grunwald1 

University of Florida, Soil, Water, and Ecosystem Sciences1. LandScan, Davis, California2 Optimization of 

sampling protocols and laboratory analysis for soil characterization is still a work in 
progress in the field of quantitative soil science with emerging technologies to improve in-situ analysis of soil 
properties. The recent advancements in computer vision and computing bring together a synergistic potential 
for image processing of soil samples and make inferences on soil physical and chemical properties from digital 
images. 

The objective of this study was to develop deep learning machine vision application for in-situ imagery 
segmentation and classification of soil pore space and particle density for accurate estimation of soil physical 
properties from digital images. Digital microscopic images of soil samples were collected from a 37 acres 
almond grove with coarse-loamy soils in California, USA. The soil images were extracted from video frames 
of soil profiles to a depth of 100 cm, at a depth increment of 1 cm, with an image resolution of 1920 x 1080 
pixels, and a spatial resolution of 3 microns with a field of view of 2.3 x 1.2 mm. A pretrained semantic image 
segmentation model – DeepLabV3+ was calibrated for 300 iterations using a total of 630 images, 80% for 
training and 20% for validation. The test inferences were performed on an external dataset consisting of 400 
images. The input data consisted of binary segmentation masks, generated using ImageJ image processing 
software. 

The resulting model had a training accuracy of 91% and loss of 6.2%, and a validation accuracy of 92% with 
validation loss of 16.7%. The model was then used to mask out the porous space from the soil images to 
develop a two-dimensional soil porosity index and subsequent estimation of soil physical properties such as 
color (CIE-L*a*b* color coordinates, and extract, hue, saturation, and value), entropy, fractal dimension, and 
lacunarity. The outputs from the segmented images were compared with original images, showing visible 
improvements of pre-processed images with inference time to automatically segment and process images of 
less than 100 milliseconds. 
 
4.23 
Measurement of Soil Carbon Stocks In-Situ with Dual Wave Sensors 
Kristopher Osterloh 

South Dakota State University 

Soil organic carbon (SOC) stocks are an important measurement for soil health, monitoring carbon 
sequestration, and soil productivity. As a dynamic soil property, SOC stocks need to be regularly monitored 
and can be highly variable across even small landscapes. SOC measurements are expensive and consumptive, 
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and it remains a challenge among soil scientists to accurately measure SOC and bulk density in the field. In 
this study we assess the use of a dual-wave sensor fitter with a force meter to measure in- situ SOC stocks. 
This sensor, mounted to a hydraulic soil probe, can be used to non- destructively measure soil carbon at a high 
spatial resolution (2 cm depth increments). If effective and reliable, this technology will allow for an increased 
access to soil carbon monitoring, especially to marginalize land managers who don’t have access to traditional 
soil carbon monitoring due to economic hurdles. 
 
4.24 
Proposals for optimization in mapping electrical conductivity in sparse data 
through data fusion in irrigation zones: An application of spatial regression 
models 
Hugo Rodrigues1; Wagner Tassinari1; Marcos Bacis Ceddia1; Gustavo Mattos Vasques2; Niriele Bruno 
Rodrigues1; Matheus Leal Neves1; Ronaldo Pereira de Oliveira2; Silvio Roberto Lucena Tavares2 
1 Universidade Federal Rural do Rio de Janeiro, Km 07, BR-465, Seropédica, Rio de Janeiro, Brazil; 
2 Embrapa Solos, Rua Jardim Botânico, n° 1024, Jardim Botânico, Rio de Janeiro, Brazil . 
wtassinari@gmail.com; rodrigues.machado.hugo@gmail.com; marcosceddia@gmail.com; 
nirielebr@yahoo.com.br; gustavo.vasques@embrapa.br; ronald o.oliveira@embrapa.br; 
silvio.tavares@embrapa.br 

* Corresponding author: rodrigues.machado.hugo@gmail.com 

The scientific field of precision agriculture employs increasingly innovative techniques to optimize inputs, 
maximize profitability, and reduce environmental impact. Therefore, obtaining a high number of soil samples 
is a challenge to make precision agriculture viable. However, there is a trade-off between the amount of data 
needed and the time and resources spent to obtain this data compared to the accuracy of the maps produced 
with more or fewer points. In the present work, the research was based on a dataset of apparent electrical 
conductivity (ECa) containing 3906 points distributed along 26 transects with spacing between each of up to 
40 meters, measured by the proximal soil sensor EM38- MK2, for a grain-producing area of 72 ha in São Paulo 
- Brazil. Then, a second dataset was simulated, showing only four transects and, at the end, with only 162 CEa 
points. We took as reference the map of CEa via ordinary kriging from the grid with 26 transects, and then the 
ECa was mapped from kriging with external drift and geographically weighted regression. These last two 
methods allow the increment of auxiliary variables, such as those obtained by remote sensors that present 
spatial resolution compatible with the pivot scale, such as data from the Landsat-8, Aster, and Sentinel-2 
satellites, as well as ten terrain covariates derived from the Alos Palsar digital elevation model. Finally, each 
map was evaluated for accuracy using external validation using 400 previously selected ECa points. The three 
methods were submitted to a k-means clustering algorithm to define three management zones for irrigation 
purposes, and each management zone map was checked for its efficiency based on analysis of variance from 
soil texture data obtained from clay samples measured at a depth of 0 – 10 cm of soil in a grid of 72 points, i.e., 1 
point per hectare. The best mapping method using sparse grids was the kriging method with external drift, and 
it was also the one that presented the most significant potential for defining management zones for irrigation 
when compared to the reference map. 
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4.25 
The benefits of using a reference sampling for mitigating the impact of legacy soil 
data errors on Digital Soil Mapping outputs. 
Philippe Lagacherie1, Maider Arregui2 and David Fages1 

LISAH, Univ. Montpellier, IRD, INRAE, Institut Agro Montpellier, France BRL Exploitation, Nimes, France 
Most of the Digital Soil Mapping products now available across the globe have been developed from the 
deposits of punctual soil observations inherited from several decades of soil survey activity. By using these 
legacy data as inputs for calibrating our DSM models, we implicitly make the assumption that these legacy soil 
data are accurate and therefore do not affect significantly our DSM products. However, this assumption has 
never been tested. 

In this study, we compared, for six topsoil properties, three Digital Soil Mapping models that were calibrated 
from different datasets obtained at same locations: i) recent soil analyses performed by a certified soil 
laboratory (“reference soil data”), ii) soil analysis performed between 1955 and 1992(“legacy soil data”) and 
iii) soil property values obtained by applying a regression function that estimated the former from the latter 
(“corrected legacy soil data”). 

The comparisons between the reference data and the legacy data revealed that the latter had large overall errors 
(MSEs between 30 % and 377% of the total variances) and large biases (absolute values of MEs between 16% 
and 62% of the means). However, biases could be corrected by linear functions calibrated onto the reference 
sampling data, which in turn reduced the overall errors (from -15% to -87%). 

The evaluations of soil predictions provided by the Digital Soil mapping models showed that the biases 
affecting the legacy input data were largely propagated to the soil predictions (absolute values of MEs between 
18% and 62% of the means). Substantial decreases of predicted vs observed correlations were also observed for 
the best predicted soil properties by the reference model (R2 decreases between 0.06 and 0.18). However, the 
soil predictions obtained from the DSM models using corrected legacy soil data were unbiased whatever the 
soil proper>es and exhibited only moderate decreases of predicted vs observed correlations (R2 decreases 
between 0 and 0.07) except for Clay (R2 decreases of 0.19). 

This study highlights the need to better control the quality of the legacy soil data used in Digital Soil Mapping 
and to account for this source of uncertainty in the DSM models. 
 
4.26 
Seeking Validity in Soil Data 
Stephen Roecker1, John Hammerly 1, Andrew Brown 1, Jay Skovlin 1, Dylan Beaudette 1 1 USDA – NRCS 

Soil and Plant Science Division 

The term validation has multiple meanings depending on which other words it is paired with. Often when 
Pedometricians hear the term, they think of model validation, which occurs toward the end of the model 
building process. However, another critical form of validation is data validation. Data validation in contrast to 
model validation ensures the training data used to build a model or analyze data meets certain assumptions. If 
the data does not meet the expected assumptions, it could have serious impacts on the scientific results, ranging 
from added uncertainty to invalid conclusions. This issue is particularly relevant when analyzing legacy data. 
In such cases, the analyst often did not participate in the original data collection and therefore may lack an 
intimate knowledge of the nuances (e.g., problems) within the data. The use of data validations can identify 
problematic observations or models. The types of validations that can be applied to data range from ensuring 
the data adheres to a particular format (e.g., pH values range from 0 to 14 or labels match one of the categories 
in a lookup table) to logical checks that compare related data elements for internal consistency. Many obvious 
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checks can be automated, but others require manual inspection by domain experts. The following presentation 
will demonstrate several common data validations and methods to apply them. 
 
4.27 
Spatial pattern evaluation in comparing digital soil maps obtained with different 
methods: an important addition to pointwise metrics 
Gilio Genova 1, Laura Poggio1, David Rossiter 1,2 
1 ISRIC- World Soil information, Wageningen, the Netherlands 
2 Section of Soil & Crop Sciences, New York State College of Agriculture and Life Sciences, 233 Emerson 
Hall, Cornell University, Ithaca NY 14853 USA 

Digital Soil Mapping (DSM) is a useful tool to generate soil properties maps. Machine Learning (ML) 
algorithms have been widely used in DSM. Most applications focused on using covariates values at the soil 
observation location, and evaluations of the map accuracy were usually pointwise. In this study, we used 
Convolutional Neural Networks (CNNs), an ML model capable of incorporating contextual information around 
each point, using covariates values as images (patch) centered around soil observations. We assessed the 
outcomes of both the commonly-used pointwise metrics but also the spatial patterns of the generated maps. As 
a control we also compared the CNN maps to maps made by Random Forest (RF). The models were trained on 
a global dataset comprising 110,000 topsoil samples, employing 40 environmental covariates as predictors for 
soil properties including pH, Soil Organic Carbon, Sand, Silt, and Clay concentrations. To evaluate spatial 
patterns, we checked the range and magnitude of spatial autocorrelation and computed diverse landscape 
metrics commonly used in landscape ecology. Our findings reveal that CNN's pointwise predictive accuracy is 
comparable to that of the RF model. However, the spatial patterns generated by these two models, as well as 
CNN with different patch sizes, exhibit significant disparities. Relying solely on pointwise statistics is not 
sufficient to provide a comprehensive view of a DSM model, as spatial patterns are intricately linked to soil 
geography and land use potential. 
This study underscores the value of accounting for spatial patterns in DSM, suggesting that a consistent and 
reliable methodology is needed to quantify the differences in spatial patterns and interpret those differences 
linking with landscape and pedological information. 
 
4.28 
Towards POLARIS v2: Improving Soil Properties Mapping Over the CONUS 
Using a New Hierarchical Geospatial Framework 
Chengcheng (Emma) Xu, Nathaniel Chaney 

Department of Civil and Environmental Engineering, Duke University 

Accurate CONUS-wide soil properties maps are essential for hydrological modeling, climate change research, 
and sustainability studies. They act as vital inputs for large-scale Earth system models. Although the existing 
POLARIS dataset provides soil properties information across the CONUS, it exhibits relatively high 
uncertainties due to algorithmic weaknesses and the constrained utilization of abundant in-situ soil data. The 
new POLARIS framework (POLARIS v2) aims to enhance soil properties predictions by addressing these 
limitations. First, we incorporate novel soil covariates to improve the data-driven model's understanding of 
intricate relationships between soil properties and environmental covariates. Second, a hierarchical geospatial 
framework is implemented to address soil type imbalance, thus improving the overall model accuracy. Third, 
uncertainties are quantified and reduced by integrating more soil survey data through regression kriging in the 
process of estimating soil properties. 

This work utilizes the USGS Watershed Boundary Dataset Hydrologic Unit Code 8 (HUC8) subbasins as 
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modeling units, similar to a moving window method. It leverages the inherent similarity of environmental 
characteristics within each HUC8 domain before making soil classifications. Subsequently, a Hierarchical 
Random Forest approach is applied to classify soil types according to the USDA soil taxonomic system. This 
method utilizes the hierarchical structure of soil taxonomies, effectively addressing the imbalance of soil types 
and producing more plausible classification results. To enhance soil classification accuracy further, this 
framework incorporates advanced remote sensing data, including GOES 16/17 Land surface temperature. In 
predicting soil properties, the maps of soil classes are integrated with a harmonized soil properties database, 
yielding preliminary soil properties maps. Employing regression kriging and leveraging a wealth of in-situ soil 
observations further enhance the overall model performance. This work will provide soil physical and 
hydraulic properties at a 30-m resolution over the CONUS, demonstrating a significant enhancement in the 
predictive performance of soil properties. 
 
4.29 
A metadata-focused harmonization workflow to generate high quality datasets for 
digital soil mapping and modeling: the Alaska Soil Data Bank project 
 
Jelinski, N. 1, Brungard, C. 2, Grunwald, S. 3, Ainuddin, I. 1, Macander, M4., Ives, S. 4, D’Amore, D5.,  
Nawrocki, T. 6, Frances, B. 5, Foss, J. 5, Sousa, M. 7 
 
1University of Minnesota 2 New Mexico State University 3University of Florida, Soil, Water, and Ecosystem 
Sciences 4ABR, Inc., 5US. Forest Service, 6University of Alaska, 7USDA Soil Survey 
 
Data harmonization efforts in soil science have typically relied on two distinct strategies: templating - where 
contributors or database curators faithfully transcribe information from the original data source into a 
prescribed format; and scripting - where unique code is written by database curators for each contributed 
dataset to convert it into harmonized form. Scripting provides flexibility, preserves the original data format, and 
facilitates schema updates. Traditional scripting workflows are reasonable for data compilation efforts that 
harmonize a limited number of large data sources but may become cumbersome when data contributions come 
from a large number of diverse sources. We present a new approach to the scripting workflow that relies on 
metadata curation and field metadata tagging as the primary method for harmonizing a wide array of data 
sources. Data curators append field metadata tags, which relate to a controlled vocabulary supported by a data 
dictionary or ontology. Subsequently, a comprehensive script mines field metadata tags to produce a 
harmonized dataset. Because this workflow focuses on controlling the quality and completeness of hierarchical 
metadata (data source, data sets, and data fields), it has the advantages of 1) preserving the original data 
formats, 2) ensuring deep, high quality metadata, and 3) requiring a single, flexible harmonization script 
instead of numerous, data source-specific scripts. This workflow is currently being implemented within the 
GEMS platform of the University of Minnesota Supercomputing Institute as part of the Alaska Soil Data Bank 
project to support digital soil mapping efforts in Alaska. However, this workflow is generalizable and easily 
adaptable to other data platforms and soil harmonization projects. 
 
4.30 
3-D Mapping of Soil Moisture Holding Capacity with Soil Depth Functions and 
Machine Learning Algorithms in a Tropical Sub-Catchment in Tanzania 
Jacob Kaingo, Siza D. Tumbo, Boniface Mbilinyi, Godfrey Taulya Sokoine University of Agriculture 
TAMISEMI 

Department of Crop and Animal Production, Mountains of the Moon University, Fort Portal, International 
Institute of Tropical Agriculture, Makerere University, Kampala 

Soil moisture holding capacity (SMHC) is highly variable and greatly influences agricultural productivity. 
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Machine learning algorithms and soil depth functions (SDF) offer means for accurate and detailed 
characterization of lateral and vertical variability of SMHC. This study examined the application of machine 
learning algorithms and soil depth functions for 3-dimensional mapping of SMHC. Soil samples were taken 
from 100 points through a stratified random sampling design at 3 depths (15 cm, 45 cm, and 75 cm). Spatial 
ancillary data was subjected to principal component analysis as covariates for SMHC prediction. Equal-area 
quadratic spline soil depth functions were fitted to model continuous vertical distribution of SMHC data. 
Random forests (RF) and Cubist decision trees (CBT) machine learning algorithms were trained on SDF fitted 
data to predict SMHC with principal components of spatial covariates as predictors. Validation was performed 
with mean error (ME) and root mean square error (RMSE) and R2 as indices. Computations were performed in 
R-software. Prediction accuracy was good with RMSEs ranging between 0.011-0.015 cm-3cm-3 and R2 
between 36 - 81.4 %. Random forests had better accuracy than the CDTs. An RF-CDT ensemble improves 
prediction accuracy. Observed results could be due to finer resolution of mapping covariates and learning 
ability of algorithms. 
 
4.31 
Exploring extrapolation effects of random forest digital soil mapping: a case study 
in African countries 
Fatemeh Hateffard1, Luc Steinbuch2, Gerard B. M. Heuvelink2,3 

Department of Landscape Protection and Environmental Geography, University of Debrecen, Egyetem ter 1, 
H-4032 Debrecen, Hungary 

Soil Geography and Landscape group, Wageningen University and Research, Wageningen, the Netherlands 
ISRIC – World Soil Information, Wageningen, the Netherlands 
Developing comprehensive global and national spatial soil information systems with high resolution faces the 
challenge of having sufficient sampling density in all regions within the area of interest. Due to a lack of 
extensive resources to acquire new soil samples, it is not uncommon that in practice we make use of spatial 
extrapolation: using soil data from one area to predict in other areas sharing similar soil-forming factors. 
Extrapolation across geographical space frequently leads to extrapolation in feature space, posing a significant 
risk to the accuracy of predictions. This study aimed to explore the extrapolation effect of the random forest 
algorithm to predict soil properties in four African countries. Topsoil data (0-20 cm) for organic carbon, clay 
and pH were extracted from the ISRIC Africa Soil Profiles database. The study comprised eight experiments in 
which soil data from either one or three countries were used as donor areas to make predictions for the other 
countries acting as recipient areas. Similarities between donor and recipient areas were identified by four 
measures of extrapolation, including similarity in soil types, homosoil, dissimilarity index by area of 
applicability (AOA) and quantile regression forest prediction interval width (QRF-PIW). The objective was to 
determine whether these measures generally agree with each other and to identify which one had the strongest 
correlation with validation metrics. The cross- validation results of the RF trained model for donor countries 
were satisfactory. However, when a model was extrapolated and was validated with data from the recipient 
area, the results were poor, highlighting extrapolation risks. A positive correlation was found between soil type 
similarity, homosoil, and the dissimilarity index by AOA, whereas a negative correlation was observed between 
the dissimilarity index by AOA and the QRF-PIW. No strong correlation was observed between the 
extrapolation measures and validation metrics. Soil type and homosoil showed a stronger correlation with 
validation metrics compared to AOA and QRF-PIW, which was disappointing given the expected higher 
correlation due to AOA and QRF relying on training data, covariates, and calibrated models. The results 
showed that further research and more case studies are needed to assess the effects of extrapolation of DSM 
models. 

Keywords: Spatial extrapolation, DSM challenges, soil similarities, prediction accuracy 
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4.32 
National scale mapping of soil organic carbon stocks in Taiwan 
Chien-Hui Syu1 *, Bo-Jiun Yang1, Budiman Minasny2, Wartini Ng2, Tsang-Sen Liu1 1Division of 
Agricultural Chemistry, Taiwan Agricultural Research Institute, Taichung, Taiwan 

2School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia 

*Corresponding email: chsyu@tari.gov.tw 

Soil organic carbon (SOC) is important for nutrients retention, aggregate structure stabilization, water holding 
capacity and crop productivity, which also play a crucial role in ecosystem service such as climate regulation. 
Therefore, accurately predicting the spatial distribution of SOC is important for estimating the carbon stock in 
soils. 

The objectives of this study are to use digital soil mapping (DSM) to generate the spatial distribution baseline 
map of SOC stock in the topsoil (0-30 cm) in Taiwan (36,000 km2), and to compare the differences in those 
among different landcover (paddy, upland, orchard, forest and other). About thirty thousand soil samples were 
used in this study, which collected from 2008 to 2020, the sampling density was higher than 0.8 sample km-2. 
Soil depth, organic carbon content, bulk density and coarse fragment of topsoil (0-30 cm) were used to 
calculate the SOC stocks, and two machine learning models cubist and random forest (RF) approach were used 
for modeling and mapping the SOC stocks with the help of several environmental variables. The results 
showed that random forest (RF) model had better prediction performance (R2 = 0.35, RMSE = 1.45), 
compared with cubist model (R2 = 0.32, RMSE = 1.50), and the spatial distribution of SOC was mainly 
influenced by topographic and climatic variables such as mean annual temperature and elevation. The RF 
model predicted average SOC stock of the forest soils (4.74 kg m-2) in this study area is than the other 
landcover types, and the total SOC stock in Taiwan is about 143 Mt. This map is the first national baseline map 
of SOC stock using the DSM technique for Taiwan at 20 m resolution, which provides valuable information to 
policymakers for evaluating the future SOC stock change. 
 
4.33 
Digital mapping of Australian soil carbon stocks from inorganic carbon 
Wartini Ng A *, Mercedes Román Dobarco A,B, Budiman Minasny A, Alex B. McBratney A 
A School of Life and Environmental Sciences and Sydney Institute of Agriculture, Faculty of Science, The 
University of Sydney, New South Wales 2015, Australia 
B BC3 Basque Centre for Climate Change, Bilbao, Bizkaia, Spain 
 
Soil carbon stocks plays an important role in the global carbon cycle and climate change as carbon sink. In arid 
and semi-arid regions, like Australia, the carbon content from soil inorganic carbon could potentially dominate 
those of organic carbon fraction. However, currently there is a lack of clear understanding on its magnitude 
compared to its organic counterpart. This study aims to determine the soil inorganic carbon content and stock 
using quantile regression forests mixture model of classification and regression models for six global soil map 
depth intervals: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm 60–100 cm, and 100–200 cm at 90 m x 90 m 
resolution. The models utilised a compilation of environmental covariates and inorganic carbon content related 
data from pH (n=41,590), effervescence (n=15,105) and soil inorganic carbon measurements (n=5,776). The 
elevated concentration of soil inorganic carbon is consistent with the distribution of calcareous soils, and 
mainly accumulates in the lower depth. Despite that the carbon stock from inorganic carbon is half of those in 
organic carbon in the upper 1 m depth; in the lower depth interval of 1–2 m, it is three times larger. This study 
provides a baseline measure of soil as a carbon sink in forms of carbonates within Australia. To mitigate 
climate change, sustainable land management should be implemented so that the soil can remain to be carbon 
sink. 

mailto:chsyu@tari.gov.tw
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4.34 
Evaluating the Performance of a Topsoil Organic Carbon Monitoring System at 
Continental Scale: Regional Validation in Wallonia, Belgium 
Marmar Sabetizadeh1, Adrián Sanz2, María Julia Yagüe Ballester2, Nikolaos Tsakiridis3, Nikolaos Tziolas4, Uta 
Heiden5, Pablo d’Angelo5, Paul Karlshoefe5, Peter Schwind5, Rupert Muller5, Laura Poggio6, Giulio Genova6, 
Sabine Chabrillat7, Robert Milewski7, Asmaa Abdelbaki7, Asa Gholizadeh8, Daniel Žížala8, Eyal Ben-Dor9, Bar 
Efrati9, Bas van Wesemael1 
 
1 Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de 
Louvain, 1348 Louvain-la-Neuve, Belgium 
2 GMV - Remote Sensing and Geospatial Analytics Division, Isaac Newton 11, P.T.M. Tres Cantos, E- 28760 
Madrid, Spain 
3 Laboratory of Remote Sensing, Spectroscopy, and GIS, Department of Agriculture, Aristotle University of 
Thessaloniki, 54124 Thessaloniki, Greece 
4 Department of Soil, Water and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of 
Florida, 2685 State Rd 29N, Immokalee, FL 34142, USA 
5 German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF), Oberpfaffenhofen, 82234 
Wessling, Germany 
6 ISRIC - World Soil Information, Droevendaalsesteeg 3, 6708 PB Wageningen (Building 101), the 
Netherlands 
7 Section Remote Sensing, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, 
Telegrafenberg, 14473 Potsdam, Germany 
8 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech 
University of Life Sciences Prague, Kamycka 129, Prague, 16500, Czech Republic 
9 The Remote Sensing Laboratory, Tel Aviv University, Zelig 10, Tel Aviv 69978, Israel 
 
The Worldsoils monitoring system for topsoil SOC combines Earth Observation (EO) data with 
reference data from the European LUCAS soil archive and computational models. The system generates 
reflectance composites using time series satellite imagery, applying a moving time window of three 
years from 2018 to 2022. These composites, featuring a 50-meter spatial resolution across Europe, are 
then categorized into either bare soil (cropland) or permanently vegetated pixels (grassland). For areas 
of bare soil, SOC predictions are performed using multi-input 1-D convolutional neural networks that 
utilize Sentinel-2 spectral bands. Meanwhile, for vegetated areas, SOC predictions are created with a 
digital soil mapping method using quantile random forest and incorporating environmental predictors 
and spectral composites. Bare and vegetated soil SOC predictions are then combined interpolating the 
values at the edges. 
To verify Worldsoils System output, three European national entities collaborated. In Belgium, external 
data for validation is sourced from regional geo-referenced SOC data. For validation, the 
predicted SOC value for each sample's corresponding pixel in the geo-referenced dataset is extracted. 
The selected samples coincide with the acquisition period for the Sentinel-2 composite. The number of 
validation samples exceeds10,000 for each year, showing a mean SOC content of 
17.4 to 18.0 g kg-1 and a standard deviation of 10.6 and 11.6 g kg-1. The system shows a tendency to 
overestimate values above 80 g kg-1. Performance metrics are evaluated for both croplands and 
grasslands by contrasting the observed SOC with predicted content. Overall, based on project's aims, 
the model's performance is adequate, with an R² value around 0.5 and a Ratio of Performance to 
Deviation (RPD) of about 1.4. The Root Mean Square Error (RMSE) is relatively high, at 7.6 to 
8.4 g kg-1, largely due to less accurate predictions for pixels with SOC contents exceeding 25 g kg- 
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1. The bias in SOC predictions is minimal, ranging from -0.35 to 0.125 g kg-1. The accuracy of the 
prediction system allows detecting the effect of regenerative agriculture in regions with similar pedo-
climatic conditions. However, the monitoring period was insufficient to reveal differences in SOC 
content over time within the same regions. 
Keywords: Digital soil mapping, Earth Observation Data, Computational Models, Sentinel-2 Imagery. 
 
4.35 
Machine learning models do not provide higher accuracy models compared to 
ordinary kriging under high density soil observations 
Chien-Hui Syu1 *, Budiman Minasny2, Bo-Jiun Yang1 

1Division of Agricultural Chemistry, Taiwan Agricultural Research Institute, Taichung, Taiwan 2School of 

Life and Environmental Sciences, The University of Sydney, New South Wales, Australia 

*Corresponding email: chsyu@tari.gov.tw 

The impact of the quantity of training data on the accuracy of machine learning models to predict soil 
properties has been extensively examined. Research findings consistently indicate that machine learning 
models tend to yield optimal results when trained on a substantial volume of data, often surpassing the 
performance of ordinary kriging. However, these investigations have predominantly relied on pre-existing, 
sparsely sampled datasets. Notably, no comprehensive studies have explored the influence of high soil sample 
density observations (more than 1 sample/km2) on machine learning model performance, primarily due to the 
scarcity of real-world data in this regard. In the current study, we leveraged data from the Taiwanese soil 
survey, where the sample density amounted to one observation per 250 meters on a grid or approximately four 
observations per square kilometer. The study area was located in central Taiwan. Our data was divided into 
two sets: a random quarter subset for testing (n = 1389, equating to roughly one sample per square kilometer), 
and the remaining data (n = 5553, approximately three samples per square kilometer) designated as the training 
dataset. We conducted surface soil organic carbon (SOC) stock predictions at a spatial resolution of 20 meters 
by 20 meters, employing Random Forests, and compared the results with those obtained through Random 
Forests kriging and ordinary kriging. 
Systematically, we downsized the training dataset from 5553 samples to 130 samples across the study area. 
Notably, the testing data demonstrated that a reduction in the number of samples led to an exponential decrease 
in the Root Mean Square Error (RMSE). While marginal distinctions were observed, it consistently emerged 
that ordinary kriging outperformed both Random Forests and Random Forests kriging. This outcome suggests 
that the density of soil observations plays a more pivotal role than the choice of machine learning models, 
implying that the available covariates may not suffice to capture localized soil variations adequately. 
 
4.37 
Digital Mapping of Al, Fe2O3, Nb, TiO2 and W in Mineralized Laterites in the 
Brazilian Amazon  
RODRIGUES, Niriele Bruno¹; SILVA, Júlio Cesar Lopes da ²; PINHEIRO, Helena Saraiva Koenow ³; 
CARVALHO JUNIOR, Waldir 4 

1 UFRRJ, nirielebr@ufrrj.br; 2 UFRJ, jlopes@geologia.ufrj.br; 3 UFRRJ, lenask@gmail.com;4 
waldir.carvalho@embrapa.br 

The combination of remote sensing and topographical data associated with machine learning (ML) models, 
especially for digital geological and pedological mapping, has contributed to the identification of areas with 
economic potential for mineral prospecting. The Amazon contains a thick crust of laterite (>200 m), where the 
carbonation processes of the siderite have produced a goethite/hematite crust. In this sense the goal was to 
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identify patterns in rock alteration types and target mineralization, especially in areas that are difficult to 
access. In order to achieve the goal different ML models were tested (Multivariate Adaptive Regression Spline 
(MARS), Radial Support Vector Machine (svmRadial) and Random Forest (RF)) to predict the spatial 
distribution of Al, Fe2O3, Nb, TiO2 and W contents in Morro dos Seis Lagos, Brazilian Amazon. The input 
dataset gathers geochemical data from 341 samples (soil, sediments, and rock materials) with morphometric 
covariates and spectral indices from remote sensing data, obtained by combining satellite bands from Sentinel-
2A, Sentinel-1A and Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER). 
The most important covariates for each mineral compound and each model were selected using the Recursive 
Feature Elimination (RFE) algorithm. The results obtained showed better performance for the prediction of Al 
(R2 =0.25), Fe2O3 (R2 =0.36), W (R2 =0.35), TiO2 (R2=0.15), using the RF model, while the MARS model 
presented better performance to predict Nb content (R2 =0.10). The RFE algorithm highlighted the relevance 
of the covariates Elevation, Real Surface Area, LS-factor, Saga Wetness Index, Multiresolution Index of 
Valley Bottom Flatness (MRVBF), Topographic wetness index and Ferrous Iron. In this context, it was found 
that the characteristics of the local relief played a more significant role in understanding the spatial variation of 
mineral compounds, given the greater influence of morphometric covariates to predict the different elements 
and compounds. 
Keywords: Pedometrics. Machine-learning; Poorly accessible areas. 
 
4.38 
How can Google Earth Engine and Vis-NIR aid in the challenge of mapping 
alluvial soils in Tribal Nations 
Marcelo Mancini1,2; Edwin Winzler3; Joshua Blackstock3; Phillip R. Owens3; Zamir Libohova3; David 
Miller1; Sérgio H. G. Silva1; Nilton Curi1; Amanda Ashworth4 

1Department of Crop, Soil, and Environmental Sciences, Univ. of Arkansas, 465 Agriculture Building, 
Fayetteville, AR 72701, USA 

2Department of Soil Science, Federal Univ. of Lavras, 1001 Doutor Silvio Menicucci Ave., Lavras, Minas 
Gerais 37200-900, Brazil 

3USDA-ARS, Dale Bumpers Small Farms Research Center, 6883 AR-23, Booneville, AR 72927, USA 

4USDA-ARS, Poultry Production and Product Safety Research Unit, Univ. of Arkansas, O-303 Poultry Science 
Center, Fayetteville, AR 72701, USA 

Alluvial soils have intricate spatial distributions stemming from continuous deposition of sediments, land use 
changes and management. Soils from alluvial floodplains in the Colorado River Indian Tribes (CRIT) are no 
exception and soil data in Tribal Nations are scarce for spatial mapping, land use and management planning. 
An initiative is undertaken by tribes and researchers to gather data and support Native American agrarian 
communities in the CRIT. Here we explore how Google Earth Engine (GEE) and Visible and Near- infrared 
Reflectance Spectroscopy (Vis-NIR) can be used to tackle the challenge of mapping a highly variable 
landscape with yet limited data (n=137). Proximal sensing is more accurate than satellite-derived reflectance 
(Vis-NIR) but can only offer point-data and hence requires interpolation, adding more uncertainty to results. 
Conversely, reflectance data from satellites cover almost all globe and are publicly available; however, they 
have a lower signal-to-noise ratio compared to proximally sensed reflectance. 
 
We investigate the usage of remotely and proximally sensed data in predicting macronutrient content via 
machine learning models that were trained with: i) Sentinel-2 bands from the day of sampling (May 15, 2023); 
ii) pixel-based statistics (medians and inter-quantile ranges) of Sentinel-2 scenes between 2018 and 2023 (555 
scenes, 9 bands) that had vegetation and clouds masked out using GEE; iii) Vis-NIR bands. Most 
macronutrients could not be accurately predicted by the approaches. Best results were attained for K by models 
trained with pixel-based statistics of masked bands (train R2=0.73; test R2=0.44) and for Mg using Vis-NIR 
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bands (0.62; 0.37). The worst results came from using unmasked bands from the sampling date. 
Models trained with pixel-based statistics achieved results comparable to those using Vis-NIR data. In other 
words, statistics calculated from masked satellite data were found to highlight geomorphological persistent 
patterns in the landscape, which were more correlated to the spatial distribution of macronutrients than the 
unmasked scene. Masking vegetation and clouds using GEE provided spatiotemporal data capable of offering 
performance comparable to proximal sensing. Statistics of spatiotemporal satellite data and proximal sensing 
can support digital soil mapping endeavors in alluvial soils and help improve crop management in Tribal 
Nations. 
 
Keywords: Soil fertility; digital soil mapping; machine learning; proximal sensing; remote sensing; Sentinel- 2. 
 
4.39 
Distribution of heavy metals in the soils of conterminous USA and implications for 
food and environmental safety 
Kabindra Adhikari1, Marcelo Mancini2,3, Zamir Libohova4, Joshua Blackstock4, Edwin Winzeler4, Phillip R. 
Owens4, Sérgio H. G. Silva3, Nilton Curi3 

1USDA-ARS, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA 

2University of Arkansas, Dept. of Crop, Soil, and Environmental Sciences, Fayetteville, AR 72701, USA 

3Federal University of Lavras, Dept. of Soil Science, 37200-900 Lavras, Minas Gerais, Brazil 

4USDA-ARS, Dale Bumpers Small Farms Research Center, Booneville, AR 72927, USA 

Management of sites contaminated with heavy metals requires precise information on their spatial distribution. 
This study aimed to predict and map the distribution of Cd, Cu, Ni, Pb, and Zn across the conterminous USA 
using point observations, environmental variables, and Histogram-based Gradient Boosting (HGB) modeling. 
Nearly 9200 surficial soil observations from three data sources: the Soil Geochemistry Spatial Database 
(n=1150), the Geochemical and Mineralogical Survey of Soils (n=4857), and the Holmgren Dataset (n=3400), 
and 28 covariates representing climate, topography, soils, and environmental hot-spots were compiled. Model 
performance was evaluated on 20% test data using R2, ρc, and RMSE indices. Prediction uncertainty was 
calculated as the difference between the estimated 95% and 5% quantiles provided by HGB. The model 
explained up to 50% of the variance in the data with RMSE between 0.16 (Cu) and 23.4 mg kg-1 (Zn), 
respectively. High Pb concentrations were observed near urban areas. Peak concentrations of all metals were 
found in the Mississippi River Valley. Cu, Ni, and Zn concentrations were higher on the West Coast; Cd 
concentrations were higher in the central USA. Clay, pH, evapotranspiration, temperature, and precipitation 
were among the model's top five important variables. The combined use of point observations and 
environmental variables coupled with machine learning provided reliable predictions and updated maps of 
heavy metals distribution in the soils of the conterminous USA. These maps would support monitoring and 
policies for managing the environmental and human impacts of heavy metals. The methodology could be 
applied to similar areas and conditions worldwide. 

Keywords: soil contamination, soil chemistry, digital soil mapping, metal pollution, prediction uncertainty 
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Figure 4. Fine Vertic Argigypsid in a pluvial lake bed 
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5.1 
Gaussian process: A comparison with depth-harmonised approach - a case study 
of mapping soil constraints 
Jie Wang*1, Patrick Filippi1, Sebastian Haan2, Bret Whelan1, Thomas FA Bishop1 1Sydney Institute of 
Agriculture, School of Life and Environmental Sciences, The University 

of Sydney, Sydney, NSW 2006, Australia 
2Sydney Informatics Hub, The University of Sydney, Sydney, NSW 2006, Australia Correspondence: 
jie.wang@sydney.edu.au 

Soil constraints play a pivotal role in shaping potential crop yields and the overall profitability of farming 
endeavours. The distribution of these constraints within the soil profile exhibits a continuous and spatially varied 
pattern. However, effectively modelling and mapping these constraints encounter a challenge due to uneven 
sampling of specific depths. Precisely identifying the exact depth at which a constraint becomes evident is a 
critical objective. To address this concern, a spline-then-model approach can be employed, which involves the 
harmonization of soil profile data followed by the fitting of a spatial model. Nonetheless, this technique fails to 
consider the uncertainty associated with the values derived from the depth functions as it typically assumes 
these values to be error-free. 

To surmount this limitation, this study introduces Gaussian process (GP), a method comprising two key 
components: a mean function and a kernel that characterizes residual variability. The primary objective is to contrast 
GP with the commonly used spline-then-model approach. This comparative analysis was carried out on a case 
study farm located in northern New South Wales, Australia, where a three- dimensional (3D) mapping of soil 
pH and electrical conductivity (EC) was performed. Embracing the GP methodology offers more than just point 
predictions; it yields an entire probability distribution of predictions. This distribution empowers the 
quantification of prediction uncertainty at various points. Furthermore, GP enables the estimation of average 
constraint values for soil volumes rather than point support, resulting in a notable 70% reduction in 
uncertainty on average. This capability to assess uncertainty holds particular significance in the context of 
decision-making and risk assessment, as it equips us with the information needed to make informed choices 
based on our confidence level in the predictions. Integrating volume-based predictions enhances the precision 
and credibility of soil mapping, thereby enabling more effective land management strategies and resource 
allocation. 
 
5.2 
Modelling soil organic carbon stock in space and time at multiple scales: Case 
study from Hungary 
Gábor Szatmári1*, Annamária Laborczi1, Katalin Takács1, János Mészáros1, András Benő1, Zsófia Bakacsi1, 
Béla Pirkó1, Sándor Koós1, László Pásztor1 
1 Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Budapest, Hungary 

*E-mail: szatmari@rissac.hu 

Soil organic carbon (SOC) plays a crucial role in addressing various environmental issues and challenges (e.g. 
climate change, land degradation, food security, water security). Therefore, spatially and, more often, spatio-
temporally explicit information on SOC stock is required for a number of national and international initiatives 
focusing on, for example, mitigating climate change, achieving land degradation neutrality, etc. However, the 
spatial scale and time period for which information on SOC stock is needed may vary widely from application 
to application, which could pose a real challenge. 

The Hungarian Soil Information and Monitoring System (SIMS), which has been in operation since 1992, 
collects information on SOC content every three years at 1236 monitoring sites in Hungary. The SOC stock 
data derived from SIMS together with spatio-temporally exhaustive environmental covariates formed the basis 
of this research, with the aim of building a space-time model for SOC stock that allows its prediction at 
different supports in space and time. 

mailto:jie.wang@sydney.edu.au
mailto:szatmari@rissac.hu
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To model the space-time variability of SOC stocks, a combination of machine learning and space-time 
geostatistics was applied. Random forest was used to model the spatio-temporally varying trend component, 
while space-time geostatistics was used to model the spatio-temporally correlated stochastic component. The 
latter is the key to a reliable quantification of the prediction uncertainty at a support larger than the support of 
the observations, as it is important to take the space-time correlation of the interpolation errors into account. 
After building the space-time model, SOC stock was predicted at various spatial supports (e.g. point support, 
square blocks with different sizes) and the change in SOC stock was predicted for different time periods (e.g. 1 
year, 3 year, 5 year). 

The aim of this presentation is to outline the methodology we used, to highlight some methodological challenges 
we faced, to present the resulting predictions and maps, and finally, but importantly, to discuss the experience 
in a wider context. 

Acknowledgements: This research was funded by the National Research, Development and Innovation Office 
(NKFIH; grant number: K-131820) and the János Bolyai Research Scholarship of the Hungarian Academy of 
Sciences. 
 
5.3 
Dealing with missingness, truncation, and censoring in multi-source data to map 
soil organic carbon stocks 
Alessandro Samuel-Rosa1, Taciara Zborowski Horst1 
1 Federal University of Technology-Paraná (UTFPR) <alessandrorosa@utfpr.edu.br> 
<taciaraz@utfpr.edu.br> 

MapBiomas is a network of universities, research centers, NGOs, and tech startups producing time series of 
land information across the Brazilian territory. Soil organic carbon (SOC) stock (0-30 cm; 30- 100 cm) is one 
of the themes mapped by the network. The approach consists of using point data from thousands of soil 
samples to train machine-learning algorithms that are later used to make predictions in space and time using 
hundreds of spatially exhaustive covariates. Like any initiative concerned with mapping soil properties over 
large territorial extensions, MapBiomas has to gather training point soil data from multiple sources. Thus, a key 
step is the preprocessing of these training data to achieve consistency and completeness. As the data was 
originally produced for uses other than mapping SOC stocks in space and time, missingness, truncation, and 
censoring are common features. Data on soil bulk density and volume of coarse fragments and roots are usually 
missing. Agricultural experiments and the like generally produce data on SOC content only for the first 10 or 20 
cm of the topsoil. Several soil surveys only sample (augering) a layer of about 20 cm of the A and B horizons 
necessary to classify the soil up to the second level of the Brazilian classification system. Data on the total soil 
depth is rarely recorded, even when the soil is shallow (<100 cm). In this presentation, we will show our 
approach for imputing data on key soil properties for computing SOC stocks, such as bulk density and volume 
of coarse fragments. The approach is based on training imputation algorithms that can explicitly handle 
missingness even in the auxiliary variables. We will also show how natural splines and survival models are 
being employed to model soil-depth functions. These soil-depth functions are used to map profile soil data to a 
common vertical support (0-30 cm and 30-100 cm), fill gaps between sampling layers and horizons, and extend 
any topsoil data on SOC stock down to the lowermost depth limits of 30 and 100 cm. Various examples will be 
presented using real-world data obtained from the Brazilian soil data repository (SoilData, 
https://soildata.mapbiomas.org). 

Keywords: Legacy data; Imputation algorithms; Natural splines; Survival models; Pedotransfer functions 
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5.4 
Leveraging Remote Sensing, Soil Properties, and AI Technologies for 
Nowcasting/Forecasting Soil Moisture in 3D Space and Time 
Saman Rabiei1, Ebrahim Babaeian1, Sabine Grunwald1 

1Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL 

Accurate real-time and future state of Soil Moisture (SM) is vital for a range of applications, including 
hydrologic modeling, weather forecasting, and enhancing water management in agricultural fields. 
However, current satellite observations such as National Aeronautics and Space Administration (NASA) Soil 
Moisture Active Passive (SMAP) products, come with inherent limitations in providing high-resolution SM 
estimates across multiple soil layers. Insights are offered by SMAP, but its limitations include infrequent data 
updates (1-2 days) and large pixel sizes (9- and 36 km). Additionally, its products, covering surface (0-5 cm) 
and profile-averaged (100 cm) SM, are not applicable for decision-making in finer-scale areas. In response, a 
novel framework introduced in this study for estimating high-resolution SM at multiple layers of the soil profile 
(0-100 cm) by integrating SMAP’s SM products with an array of geodata, including high- resolution soil 
physical properties, meteorological variables (precipitation), surface reflectance data from satellite remote 
sensing observations (short wave infrared and vegetation index), topographic characteristics (slope, curvature, 
and compound topographic index), and ground- reference measurements. The high-resolution (100 m) physical 
soil attributes maps provided by the Natural Resource Conservation Services (NRCS) Soil Landscapes of the 
United States (SOLUS) dataset, and SMAP SM product into a Convolutional Neural Network (CNN) – Long 
Short-Term Memory (LSTM) deep learning model. This enables the complex and non-linear relationships 
between SM and soil physical properties to be defined for producing high-resolution ‘real-time’ SM nowcasts 
and forecasts, revolutionizing the precision of SM estimation in multiple soil layers. In this research, the 
accuracy of the models is validated against ground reference data from the U.S. Climate Reference Network 
(CRN) and the Soil Climate Analysis Network (SCAN). Our approach is supported by an extensive, multi-
source, multi-scale, dataset and cutting-edge AI techniques, providing an invaluable tool for understanding and 
managing SM dynamics in soil profiles which is essential for irrigation planning and precision agricultural 
applications. 
How to cite: Rabiei, S., Babaeian, E, Grunwald, S. 2024. Leveraging Remote Sensing, Soil Properties, and Ai 
Technologies for Nowcasting/Forecasting Soil Moisture In 3D Space and Time. the Pedometric 2024: 
addressing the 10 challenges, New Mexico State University, Las Cruces, NM USA. February 5-9, 2024 
 
5.5 
Fine-Resolution Near-Real-Time Soil Moisture Mapping in Tasmania through 
Transfer Learning 
Marliana Widyastuti1, José Padarian1, Budiman Minasny1, Mathew Webb2, Darren Kidd2 
1 School of Life an Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia. 
2 Environment, Heritage & Land Division, Department of Natural Resources and Environment Tasmania, 
Prospect, Tasmania, Australia 

Mapping the dynamics of soil moisture is crucial for water resource management, agriculture, and climate 
studies, but it poses challenges due to its spatial and temporal variability. Although current remote sensing 
products offer fine temporal resolution for global soil moisture, their spatial resolution remains coarse. This 
study's primary objective was to map daily soil moisture across Tasmania, Australia, at 80-meter resolution, with 
a limited training dataset. We explored three modeling strategies: models calibrated using an Australian dataset, 
models calibrated using the Tasmanian dataset, and a transfer learning approach that leveraged the knowledge 
gained from Australian models and applied it to the Tasmanian data. Our models used the Soil Moisture Active 
Passive (SMAP) dataset combined with weather data, elevation maps, land cover information, and multilevel 
soil properties maps, to generate daily soil moisture estimates for both surface (0-30cm) and subsurface (30-
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60cm) layers. 

Key findings from this study revealed transfer learning demonstrated significant performance improvements, 
reducing errors by up to 45% and increasing correlation values by 50%, compared to models trained solely using 
Tasmanian data. In addition, the LSTM (Long Short Term Memory) enhances the transfer learning achieving the 
highest overall performance, with average root mean square error (RMSE) of 0.07, and a correlation coefficient 
of 0.70. These fine-resolution soil moisture maps accurately captured both spatial and temporal variations, 
reflecting the distinct seasonal changes in Tasmania's landscape. The soil moisture models captured the drying 
of agricultural soils in Tasmania due to the El niño season since the beginning of 2023. The model is live, 
provides real-time predictions of daily soil moisture levels and weather data, offering valuable insights for land 
managers and farmers to optimize soil water management for crop production and environmental monitoring. 
 
5.6 
Spatio-Temporal mapping of soil organic carbon stock in Brazil 
Nícolas Augusto Rosina, José A. M. Demattêa, Raul Roberto Poppiela, Jorge Tadeu Fim Rosasa, Heidy Soledad 
Rodriguez-Albarracína and Fernando Yutaro Makinoa 
dDepartment of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), 
Piracicaba, São Paulo, zip code: 13418-900, Brazil. narosin@usp.br; jamdemat@usp.br; 
jorge.fimrosas@usp.br; hsrodrigueza@usp.br; fer.yut@usp.br 

Digital mapping of soil information is key for soil health and food security. The soil organic carbon (SOC) is a 
key soil attribute, having direct relation with physical, chemical, and biological properties. The soil could be 
sink or drain of C to atmosphere depending on management and the loss of C reduces the soils functions. We 
aimed to map the spatio- temporal distribution of the SOC stock in Brazilian soils for superficial layer based in 
remote sensing covariates and machine learning. We obtained a temporal database with soil observation and 
environmental covariates (static and dynamic) for Brazilian territory. The 0- 20cm layer SOC stock was mapped 
with high resolution (30m) from 1984 to 2023 for 5-year periods by digital soil mapping framework. Terrain 
attributes (static), vegetation indices (dynamic) land use and land cover (LULC) (dynamic) and a soil-vegetation 
image (dynamic) were used as covariates. A unique Random Forest model was calibrated and used to predict 
the SOC stock by use of dynamic covariates of each period. The SOC stock predictive model reached R2 of 0.86, 
RMSE of 14.77 ton ha-1 and RPIQ of 1.63. The most important covariates were some terrain attributes and 
LULC. The Brazilian soils in superficial layer had 33.42 Gt of SOC in the first period (1984-1998) and now 
have 32.95 Gt of SOC in the last period (2019-2023), which represents a loss of 0.47 Gt of C (-1.43%). The 
losses were of 0.40 Gt (- 2.36%) in Amazon, of 0.04 Gt (-0.39%) in Cerrado, of 0.03 Gt (-3.50%) in Pampa and 
of Mata Atlântica 0.03 Gt (-0.61%). In the other hand, the soils from Caatinga (0.01 Gt / +0.39%) and Pantanal 
(0.01 Gt / +1.38%) gained SOC. The losses of SOC are associated manly with LULC changes and the gains 
with several factors. The use multitemporal machine learning model based in remote sensing covariates is an 
efficient way to access the SOC stock in the past and present. These SOC stock maps at detailed scale for the 
Brazilian territory can serve as subsidy for public policies for low C agriculture and climate change mitigation. 

mailto:fer.yut@usp.br
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5.7 
Mapping of soil indicators at national scale in Lithuania using the Soil Data 
Cube and Artificial Intelligence-driven Earth Observation analysis 

  Nikiforos Samarinas1,2, *, Nikolaos L. Tsakiridis2, Eleni Kalopesa2, and George C. Zalidis1,2 Interbalkan 

Environment Center, 18 Loutron Str., 57200 Lagadas, Greece 

Laboratory of Remote Sensing, Spectroscopy, and GIS, Department of Agriculture, Aristotle University of 
Thessaloniki, 54124 Thessaloniki, Greece 

*smnikiforos@topo.auth.gr 
 
This study addresses the pressing need for evidence-based conservation recommendations in policy- making by 
advancing soil health monitoring through multidimensional Earth Observation-driven approaches. Existing 
readily available soil maps suffer from coarse spatial resolution (>200m) and outdated information, rendering 
them inadequate for fulfilling the requirements of both farmers and policies like the Common Agricultural 
Policy of the European Union. 

To bridge this gap, we present a novel approach utilizing the Soil Data Cube, a custom self-hosted tool built on 
the open datacube initiative. This innovative methodology generates annual soil thematic maps for Lithuania's 
entire agricultural area, focusing on critical indicators such as exposed soil, Soil Organic Carbon (SOC), and 
clay content. Our approach leverages a diverse set of Earth Observation data sources, including a time series of 
Copernicus Sentinel-2 satellite imagery (2018 – 2022), the Land Use/Cover Area frame statistical Survey topsoil 
database, the European Integrated Administration and Control System, and state-of-the-art Artificial 
Intelligence architectures. This enables not only enhanced prediction accuracy but also a notable spatial 
resolution of 10 meters, allowing for precise discrimination within the parcel. 

Our study evaluated five different prediction models, with the Convolutional Neural Network model emerging 
as the best performer, achieving an R-squared metric of 0.51 for SOC and 0.57 for clay content. Importantly, 
our model predictions are accompanied by prediction uncertainties based on the PIR formula, offering valuable 
insights for model interpretation and stability. 

The application of our model and the final predictions of soil indicators relied on national scale bare soil 
reflectance composite layers. These were generated through a pixel-based composite approach, overlaying 
annual bare soil maps and using a combination of various vegetation indices and filters such as NDVI, NBR2, 
and ESA’s scene classification layer. 

The findings of this research provide significant contributions to the production of high-resolution soil thematic 
maps at large scales. This advancement in soil health monitoring supports more efficient and sustainable soil 
management, thereby facilitating evidence-based policy decisions. These insights will be invaluable to both 
policy-makers and the agri-food private sector in their conservation efforts. 
 
 
 
 
 

 
 

1 

2 
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7.1 
Quantifying the potential and current state of European soils functions 
Alexandre M.J.-C. Wadoux1, Marko Debeljak2, Philippe Lagacherie1, Rachel E. Creamer3 
1LISAH, Université de Montpellier, INRAE, IRD, Institut Agro, Montpellier, France 2Department of Knowledge 
Technologies, Jozef Stefan Institute, Ljubljana, Slovenia 3Soil Biology Group, Wageningen University & 
Research, Wageningen, The Netherland 

Soils sustain a number of functions playing a key role in ecosystem functioning and providing a multitude of 
services to human society. While all soils are multifunctional, the supply of soil functions and their interactions 
differ spatially with land use type, soil characteristics, climate and management. In this presentation we will 
explore the quantification of the current state of soil multifunctionality, but also the potential – that is, the 
maximum that a soil can offer based on inherent soil indicators not affected by management practices. We 
quantify five functions of major importance to European soils and relevant to achieve the objectives defined by 
the Mission Board for Soil Health and Food: 1) primary productivity, 2) water purification and regulation, 3) 
carbon storage and climate regulation, 4) nutrient cycling and 5) provision of habitat for biodiversity. We built a 
decision support system model with a hierarchical structure. The model takes as input a simplified set of 
indicators related to dynamic and stable soil properties, as well as to climate and local information such as 
management practices, and returns qualitative aggregated attributes representing the soil functions fulfilment. 
Thresholds for the soil functions fulfilment are obtained by expert knowledge and vary across European 
environmental zones, whereas the potential is obtained through simulations for change in management 
practices. The model is tested on a large European topsoil dataset in cropland and grassland. 
 
7.2 
Identifying hotspots of polluted forest soils in the Czech Republic: comparison of 
various pedometrical methods 
Luboš Borůvka1, Radim Vašát1, Vít Šrámek2, Kateřina Neudertová-Hellebrandová2, Věra Fadrhonsová2, 
Vincent Yaw Oppong Sarkodie1, Lenka Pavlů1, Václav Tejnecký1, Radek Novotný2 
1Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech 
University of Life Sciences Prague, Czech Republic; e-mail: boruvka@af.czu.cz 
2Forestry and Game Management Research Institute, Jíloviště-Strnady, Czech Republic 

Forest floors, i.e. the superficial organic horizons of forest soils, represent an important pool of potentially toxic 
elements (PTE) accumulated there during long term atmospheric deposition. The PTE like Pb can be 
immobilized in these organic horizons and do not represent an actual environmental risk. However, they can be 
mobilized by organic matter decomposition for example after deforestation, which can present a potential risk. 
The aim of this contribution was to identify the major hotspots of forest floor pollution with PTE in the Czech 
Republic using various approaches and pedometrical methods and to compare their results. 

We used data from the aggregated database of forest soils of the Czech Republic, containing standardized soil 
properties compiled from several national-scale soil surveys done in the years 2000- 2020. There are data on 
the content and stock of Cd, Pb and Zn in forest floor of more than 4000 locations. For assessment of polluted 
sites, we used reference values of PTE content and stock in forest floor set up in a previous project for several 
categories of forest stands defined by forest vegetation zones (governed by altitude) and tree species 
composition (coniferous vs. deciduous and mixed). For the pollution hotspot identification, we used several 

mailto:boruvka@af.czu.cz
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approaches: 1) indicator kriging based on exceeding the reference values in the database; 2) ordinary kriging of 
PTE values; 3) prediction of PTE values using random forest; the predicted values in 2) and 3) were 
consequently compared to the reference values. The results of the methods are evaluated and compared and 
their advantages and disadvantages are highlighted. In addition, the hotspots determined based on the PTE 
contents were compared to the hotspots determined from the PTE stocks. The results will enable the assessment 
of potential risk of forest soil pollution and an adjustment of forest management in the identified pollution 
hotspots. 

Acknowledgement: This contribution was supported by the Ministry of Agriculture of the Czech Republic, 
project No. QK22020217, and by the Technology Agency of the Czech Republic, project No. SS06010148. 
 
7.3 
3D Soil Hydraulic Database of Hungary at 100 m resolution (HU‐SoilHydroGrids) 

Brigitta Szabóa,b, János Mészárosa,b, Annamária Laborczia,b, Katalin Takácsa,b, Gábor Szatmária,b, 
Zsófia Bakacsia,b, András Makóa,b, László Pásztora,b 
 
aInstitute for Soil Sciences, HUN-REN Centre for Agricultural Research, Hungary 
bNational Laboratory for Water Science and Water Safety, Hungary 
 
Keywords: 3D soil hydraulic maps, machine learning, multi-layered gridded information, pedotransfer 
functions, soil hydraulic conductivity, soil water retention, van Genuchten parameters 

Spatially detailed quantitative data regarding soil hydraulic properties is in high demand for a range of modeling 
applications. EU-SoilHydroGrids has demonstrated its utility at the European level, contributing to ecological 
forecasts, geological and hydrological hazard evaluations, and agri- environmental modeling, among other 
studies. Building on this continental precedent, a comparable but larger-scale, national 3D soil hydraulic 
database, known as HU-SoilHydroGrids, has been developed for Hungary with several enhancements in its 
elaboration process. 
 

(i) Pedotransfer functions (PTFs) were developed using advanced machine learning techniques, both independently 
and as part of ensemble models. 

(ii) These models were trained using the national soil hydrophysical dataset called MARTHA (acronym for 
Hungarian Detailed Soil Hydrophysical Database), ensuring the derivation of region-specific PTFs. 

(iii) The set of predictors utilized in the PTFs was augmented by additional environmental variables with 
comprehensive spatial coverage, including DEM-derived geomorphometric indices, climatic parameters, OE 
provided surface reflectance and derived data products, LULC. 

(iv) To spatially apply the resulting models, 100 m resolution information on primary soil properties was obtained 
from DOSoReMI.hu (Digital Optimized Soil Related Maps and Spatial Information in Hungary). 

(v) Finally, based on a detailed accuracy assessment, the spatial predictions (map products) were complemented with 
co-layers representing the 5% and 95% quantiles. 
 
HU-SoilHydroGrids provides nationwide information on the most frequently required soil hydraulic properties 
(water content at saturation, field capacity and wilting point, saturated hydraulic conductivity and van 
Genuchten parameters for the description of the moisture retention curve) at a spatial resolution of 100 meters, 
up to 2 meters soil depth for six GSM standard layers. In comparison to EU-SoilHydroGrids, the description of 
soil moisture retention curves and hydraulic conductivity has significantly reduced squared error in the case of 
HU-SoilHydroGrids. 
 
HU-SoilHydroGrids opens up possibilities for countrywide applications and research studies to analyze 
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environmental problems. The further development of this dataset will be directed by its integration into 
environmental models and their subsequent practical application. 
 
Acknowledgement: This work was carried out within the framework of the Széchenyi Plan Plus program with 
the support of the RRF 2.3.1 21 2022 00008 project and the Sustainable Development and Technologies 
National Programme of the Hungarian Academy of Sciences (FFT NP FTA). 
 
7.4 
Concurrent Electromagnetic Induction Sensing of Magnetic Susceptibility 
Electrical Conductivity for the Field Delineation of Soil Drainage Class 
Richard J. Heck, Farzad Shirzaditabar, Adam Gillespie, Asim Biswas, Daniel Saurete & Mike Catalano 

RJH, FS, AG & AB - School of Environmental Sciences, University of Guelph, 50 Stone Road East, GUELPH, 
Ontario, N1G 2W1, Canada. 

DS – Ontario Ministry of Agriculture, Food and Rural Affair, 1 Stone Road West, Guelph, Ontario, N1G 4Y1, 
Canada. 

MC - Geonics Limited, 745 Meyerside Drive, Unit 8, MISSISSAUGA, Ontario, L5T1C6, Canada. 

Traditional approaches to assessing soil drainage class, at the field level, have frequently considered the 
presence/absence of hydromorphological features, including redox concentrations, redox depletions 
(traditionally referred to as mottling), and reduced matrices, resulting from gleization processes, as well as 
surficial accumulations of organic matter. These are still fundamental to many systems of soil taxonomy. 
The profile and landscape distribution of redoximorphic features is ultimately linked to aquic conditions, such 
as endosaturation (gleyic), episaturation (stagnic) or anthric saturation. Characterization of these features 
typically requires an invasive observation of the soil profile, by pit or by auger, neither of which are conducive 
to comprehensive soilscape surveys. The relationship between soil redoximorphism and magnetic susceptibility 
(MS) has been widely studied. Electromagnetic induction (EMI) techniques are now often used to map the 
apparently electrical conductivity (EC) of soil, with interpretations focusing mostly on soil salinity and 
moisture dynamics. Though EMI measurements of apparent MS are common in other geosciences and 
archeology, their applications to pedology have been quite limited. Our current research is focused on the 
integration of concurrent EMI surveys, inversion modelling and spatial interpolation, of apparent MS and EC, 
in conjunction with soil landform quantification, to improve the delineation of drainage class in agricultural 
fields. 
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Figure 5. Typic Calciargid formed in alluvial parent materials 
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9.1 
Uncertainty of spatial averages and totals of soil property maps 
Gerard B.M. Heuvelink1 and Alexandre M.J.-C. Wadoux2 
1 Department of Statistics and Actuarial Sciences, Stellenbosch University, South Africa 
    2 LISAH, Université de Montpellier, INRAE, IRD, Institut Agro, Montpellier, France 

Digital soil mappers take pride in routinely quantifying the uncertainty of maps produced, by computing quantiles of 
the predictive distributions and prediction intervals. Quantification of the prediction uncertainty, derived from the 
kriging variance in geostatistical mapping, or through methods like quantile regression forest in machine learning, is 
well-established. However, this uncertainty pertains to point support predictions, i.e. prediction that have the same 
spatial support as the observations used for model training. Yet, many users seek information about spatial averages 
or totals of soil properties, such as the mean clay content in a field or the total soil organic carbon stock in a region. 
While deriving predictions of spatial averages and totals from point predictions is straightforward, determining the 
associated uncertainty is challenging, due to spatial autocorrelation of prediction errors. Block kriging addresses this 
in geostatistical modelling, but for soil property maps created using machine learning algorithms, the solution is less 
obvious. 

In this presentation, we propose a new model-based approach that sidesteps the numerical complexity of block 
kriging, making it feasible for large-scale studies employing machine learning for soil mapping. Our approach uses 
Monte Carlo integration to derive uncertainty of spatial averages or totals from point support prediction errors. In a 
first case study, we employed block kriging and show that uncertainty in predicted topsoil organic carbon in France 
decreases as the spatial support increases. We illustrate the broad applicability of the Monte Carlo integration method 
with a non-soil example in a second case study. We estimated the uncertainty of spatial aggregates from a machine 
learning map of above-ground biomass in Western Africa, finding it to be small due to weak spatial autocorrelation of 
standardized map errors. 

This work introduces a scalable method that is of key importance to studies that aim to evaluate the statistical 
significance of predicted differences in aggregated soil properties and other environmental variables between regions 
or over time. 
 
9.2 
Quantifying Prediction Uncertainty Based on Third Law of Geography A-Xing Zhu1,2 
1Department of Geography University of Wisconsin-Madison 
2School of Geography Nanjing Normal University 

It is widely known that for a given sample set, not every location in the study area is represented by the sample set at 
the same level. Thus, it is unavoidable that uncertainty associated with the prediction of soil properties varies from 
location to location in digital soil mapping. This paper presents a theoretical basis for quantifying this varying 
prediction uncertainty. The basis is the premise of Third Law of Geography, geographic similarity, that is, “the more 
similar the geographic configurations between two locations, the more similar of the target geographic attribute”. This 
basis is then used to measure geographic similarity between the location of prediction and the sample set. Prediction 
uncertainty is then inversely related to this similarity, that is the higher the similarity of the location to the set of 
samples the lower the prediction uncertainty value. Two case studies in digital soil mapping were conducted with one 
to illustrate the effectiveness of this idea in quantifying prediction uncertainty and the other to demonstrate the utility 
of this idea in assessing sample quality. The results showed that the quantified uncertainty does reflect the quality of 
the prediction well and is useful in improving sampling efficiency. The results also demonstrated that the idea was 
successful in improving sample quality. 

Keywords: Geographic Similarity, Third Law of Geography, Digital Soil Mapping, Prediction Uncertainty. 
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9.4 
Exploring land use planners' preferences about visualization of digital soil 
mapping products for informed decision-making under uncertainty 
Léa Courteille1, Philippe Lagacherie1, Nadia Boukhelifa2, Evelyne Lutton2 & Léa Tardieu3 LISAH, Univ. 

Montpellier, IRD, INRAE, Institut Agro Montpellier, France 

MIA-Paris-Saclay, UMR 518 AgroParisTech, INRAE, Université Paris-Saclay, Palaiseau, France 

TETIS, Univ. Montpellier, INRAE, CIRAD, France Corresponding author email: lea.courteille@inrae.fr 

Soil multifunctionality maps are required to inform planning decisions. These are generally provided to users in 
the form of fine-resolution raster maps, which have two major drawbacks: (1) they are usually associated with 
very high uncertainties and (2) the information is not represented at the scale of the spatial objects on which the 
decisions are based, which are much larger than a pixel (plot, water catchment) [Vaysse et al., 2017]. Our 
hypothesis is that by aggregating the pixels of a raster into homogeneous areas, we can adapt the level of spatial 
detail to the needs of decision-makers, while limiting uncertainty, and thus facilitate information retrieval and 
decision-making. 

In order to test this hypothesis, we started from a soil potential multifunctionality index (SPMI) map developed 
for the coastal plain of the Occitanie Region [Angelini et al., 2023]. The initial SPMI estimations available at 
25m resolution were increasingly spatially aggregated using an agglomerative spatial clustering algorithm 
[Carvalho et al., 2009], which iteratively groups neighbouring pixels having similar values of predicted SPMI. 
The uncertainty of these aggregated maps was expressed either via a separate map or via a hatch pattern. More 
or less aggregated maps with different uncertainty visualizations were then submitted to users via an online 
survey. The first stage of the survey, which put the user in the shoes of a land-planner, allowed us to assess the 
quality of the produced maps as decision supports and to which extent users take uncertainty values into 
account. In the second stage, several pairs of maps were submitted to the user, and each time, they were asked 
to select the most intelligible one. This pairwise comparison data served as input to compute the Elo ranking of 
each map [Elo et al., 1978, Langlois et al., 2022], which was used as a proxy for the intelligibility of the 
produced maps. This step helped us deduce which characteristics (in terms of uncertainty representation, level 
of aggregation, etc.) make a map more meaningful for end-users. 

References: 

Vaysse, K., Heuvelink, G. B., & Lagacherie, P. (2017). Spatial aggregation of soil property predictions in 
support of local land management. Soil Use and Management, 33(2), 299-310. 

Angelini, M. E., Heuvelink, G. M., & Lagacherie, P. (2023). A multivariate approach for mapping a soil quality 
index and its uncertainty in southern France. European Journal of Soil Science, 74(2), e13345. 

Carvalho, A. X. Y., Albuquerque, P. H. M., de Almeida Junior, G. R., & Guimaraes, R. D. (2009). Spatial 
hierarchical clustering. Revista Brasileira de Biometria, 27(3), 411-442. 

Elo, A. E., & Sloan, S. (1978). The rating of chessplayers: Past and present. (No Title). 

Langlois, J., Guilhaumon, F., Baletaud, F., Casajus, N., Braga, C. D. A., Fleuré, V., ... & Mouquet, N. (2022). 
The aesthetic value of reef fishes is globally mismatched to their conservation priorities. Plos Biology, 20(6), 
e3001640. 
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9.5 
New evaluation criteria for digital soil mapping products from an user's point of 
view 
Philippe Lagacherie and Léa Courteille (INRAE LISAH Montpellier) 

Until now, soil mapping products (digital or otherwise) have mainly been evaluated on the basis of the 
agreement between predicted and actual values of soil properties on unvisited point sites ("accuracy"). At a time 
when soils are increasingly taken into account in territorial decisions, we argue that this evaluation from the 
data producer's point of view should be complemented by criteria that would take better account of the end-
user's point of view. 

With this in mind, we introduce three additional qualitative criteria for evaluating soil mapping products from 
the user's point of view: relevance, integrity and intelligibility. We will illustrate the application of these criteria 
to a range of currently available soil mapping products. We will review the advances in pedometrics that have 
made it possible to better meet these criteria. Finally, we will highlight the methodological issues that still need 
to be resolved to fully satisfy these user-oriented criteria. 
 
9.6 
Evaluating On-Farm Functional Soil Variability: A Decision Support Framework 
Jonathan J. Maynard, USDA NRCS; Dylan Beaudette, USDA NRCS; Shawn Salley, USDA NRCS; and Jeffrey 
Herrick, USDA ARS 

Sustainable land management depends on access to soil information that can directly inform decision-making. 
Yet, the site-specific accuracy of soil information and thus its appropriateness for directing management actions 
is often unclear. In the U.S., there are two main sources of uncertainty associated with soil map information: (1) 
spatial uncertainty of soil classes assigned to a soil map unit, and (2) the uncertainty of soil property values for 
a given soil class (i.e., low-representative-high). Land managers are faced with the challenge of understanding 
when these sources of uncertainty matter (i.e., measurable impact on management outcomes) and, if they do, 
what additional sources of information (e.g., field observation) can be collected to minimize uncertainty and 
improve the accuracy of the soil map information used for decision making. We introduce a decision support 
framework to assess the importance of soil variability in land management. This framework evaluates soil 
functional variability using simulated soil profile realizations from SSURGO soil data, with the number of 
simulations for each soil type proportional to its map coverage. Each simulated soil profile realization is 
derived from the joint probability distribution of the SSURGO data, allowing for the creation of probabilistic 
soil property distributions for each soil property of interest and to propagate soil property uncertainties. To 
illustrate this framework, we use plant available water storage (PAWS) in the top 50 cm as our functional 
indicator. Our presentation will show how this framework facilitates the evaluation of site-specific soil 
functional variability. This framework offers a robust solution to the challenges posed by uncertainties in soil 
information through systematically evaluating the functional impact of these uncertainties; thus, fostering more 
informed and effective land management decisions. 
 
9.7 
Using the LandPKS algorithm to estimate the sensitivity of ecological site 
identification in response to uncertainties in soil observations 
 
Pedro Martinez, USDA-ARS, Jornada Experimental Range 
 
Ecological site information allows land managers to make informed management decisions that 
ensure rangelands are used within the bounds of their land potential. To provide information on 
ecological sites across public lands, the Bureau of Land Management (BLM) launched, in 2011, 
the Assessment, Inventory, and Monitoring (AIM) terrestrial strategy with the purpose of 
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characterizing key ecosystem processes following standard soil, vegetation, and geomorphological 
protocols. Although the AIM terrestrial strategy delivered a large dataset with over 50,000 
monitoring plots and 120,000 soil observations, it is still unknown the level of error (sensitivity) 
in ecological site identification in response to uncertainties in soil and geomorphic descriptions in 
the field. A better understanding of the level of error in the AIM dataset would ensure that data 
users (e.g., ecologists, rangeland managers, soil scientists, etc.) are aware of potential limitations 
in the dataset and can inform training of future field data collectors. Here, we compare observer- 
identified ecological sites in the AIM dataset, expert-reviewed identification, and the ecological 
sites predicted using the Land Potential Knowledge System (LandPKS) soil matching algorithm 
which leverages information from national databases (e.g., SSURGO and STATSGO2) along with 
site-specific characteristics, such as GPS coordinates, slope, and soil observations (e.g., soil texture 
and rock fragment volume). Our findings provide insights into the uncertainties in ecological site 
identification and can be used to improve future ecological site identification by field observers in 
the United States. 
 
9.8 
Leveraging user feedback and normalized uncertainty maps to inform future 
updates to national soil property maps 
Travis Nauman1, Suzann Kienast-Brown1, Dave White1, Colby Brungard2, Stephen Roecker1, Jessica Philippe1, 
James Thompson3 
1 USDA – NRCS Soil and Plant Science Division 
2 New Mexico State University 
3 West Virginia University 

The United States National Cooperative Soil Survey (NCSS) is producing a suite of digital soil property maps 
entitled Soil Landscapes of the United States (SOLUS) that will be regularly updated. The first iteration of 
SOLUS is 100-meter maps of 20 soil properties commonly used for modeling and soil survey interpretations. 
The NCSS has numerous standards for reviewing soil survey projects, but SOLUS products required a new 
approach for internal review to ensure transparency and quality for end users. To enable easy and consistent 
feedback, online Google Earth Engine applications were created with custom visualizations for all properties at 
seven depths. A relative prediction interval (RPI) map is also provided along with a rendering of property 
estimates from weighted average maps of the best available NCSS soil survey data (i.e., Gridded National Soil 
Survey Geographic Database [gNATSGO]) for the same property and depth. Users could click on the map and 
view all the property predictions and uncertainty metrics (prediction intervals and RPI) for any point. Users were 
prompted to provide feedback that could be general in nature or tied to a specific coordinate via a Google form. 
Responses ranged from very specific location-based feedback that cited uncertainty to broad statements of 
subjective approval or disapproval of the maps. The majority of the feedback included objective criteria that can 
be used to both (i) inform users of the data and (ii) inform strategies to update SOLUS to improve the quality. 
Initial results show that critical comments gathered in the review to correspond well to areas with high RPI 
values, indicating more model uncertainty and suggesting that RPI can help direct future update efforts. A 
synthesis of these comments and their relationship to uncertainty will be used to develop methods to improve 
the future versions of SOLUS. This presentation will summarize the SOLUS internal review synthesis in order 
to prompt a discussion around how to incorporate user feedback into digital soil maps. 
 
9.9 
Landscape uncertainty for DSM at continental scale 
Laura Poggio, David Rossiter, Giulio Genova, Bas Kempen, Luis Calisto, Niels Batjes 

Landscape uncertainty in the context of digital soil mapping (DSM) refers to the inherent variability and 
uncertainty associated with soil properties across a landscape. Soil properties can vary significantly across a 
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landscape due to natural factors such as topography, parent material, climate, and vegetation, as well as 
anthropogenic factors including land use and land management practices. The quality, quantity and spatial 
distribution of soil observations and environmental covariates can affect the level of uncertainty of soil 
mapping products. 

DSM studies commonly assess prediction uncertainty using various approaches, including multiple simulations 
or quantile random forests. However, this does not encompass all the potential elements that could be used to 
characterize the uncertainty of a DSM product. These other elements include positional accuracy of the training 
points and resolution of the covariate layers (with the magnitude of this effect related to the level of spatial 
autocorrelation in the covariate space), area of applicability (i.e., the area in covariate space where the model 
learns about relationships based on the training data) and the landscape heterogeneity both in the landscape 
itself and in covariate space. 

In this study we present initial results on how to integrate the elements mentioned above in an assessment of 
DSM uncertainty at continental scale. The test case is Europe with input observations with high positional 
accuracy and observations with a 1 km positional accuracy. We use a covariates space that covers the soil 
forming factors according to the scorpan model. We characterize the spatial heterogeneity of the landscape and 
the covariates space using commonly-used landscape metrics. The results imply some practical reflections on 
how to integrate all the above elements to identify regions where the confidence in the predictions is higher 
and the resulting uncertainty is lower. 
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Figure 6. Calcic Petrocalcid on Lower La Mesa surface near Las Cruces, NM
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10.1 
Quantifying the contribution of topsoil depth to ecosystem productivity across 
ecosystems and climatic regions 
Yakun Zhang1*, Ankur R. Desai2, Jingfeng Xiao3, Alfred E. Hartemink1 
1 University of Wisconsin–Madison, Department of Soil Science, FD Hole Soils Lab, 1525 Observatory Drive, 
Madison, WI 53706, USA 
2 University of Wisconsin–Madison, Department of Atmospheric and Oceanic Sciences, 1225 W Dayton St, 
Madison, WI 53706, USA 
3 Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New 
Hampshire, Durham, NH 03824, USA 

Terrestrial ecosystem productivity is essential for global food security and promoting carbon sequestration. 
Understanding the controlling mechanisms of soil properties on ecosystem productivity is essential for 
sustaining productivity and increasing resilience under a changing climate. Here we investigate the control of 
topsoil depth (e.g., A horizons) on long-term ecosystem productivity. We used nationwide observations 
(n=2,401) of topsoil depth and multiple scaled datasets of gross primary productivity (GPP) for five 
ecosystems (cropland, forest, grassland, pasture, shrubland) over 36 years (1986–2021) across the 
conterminous USA. We first investigated the relationship between topsoil depth and GPP across five 
ecosystems and climatic regions using simple linear regression. We found that the topsoil depth-GPP 
relationship is primarily associated with water availability, which is particularly significant in arid regions 
under grassland, shrubland, and cropland (r=0.37, 0.32, 0.15, respectively). Then we selected 103 pairs of 
relatively shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil 
type) constant and conducted pairwise comparisons and linear mixed- effects models. Results showed that the 
positive control of topsoil depth on GPP occurred primarily in cropland (0.73) and shrubland (0.75). The GPP 
difference between deep and shallow topsoils was small and not statistically significant. Structural equation 
modeling was used to investigate the contributions of topsoil depth and other soil and environmental factors on 
GPP, and we found that the contribution of topsoil on GPP (coefficients: 0.09–0.33) was similar to that of heat 
(coefficients: 0.06–0.39) but less than that of water (coefficients: 0.07– 0.87). The resilience of ecosystem 
productivity to climate extremes was further evaluated using annual GPP and climate data over 36 years. 
Deeper topsoils increased stability and decreased the variability of GPP under climate extremes in most 
ecosystems, especially in shrubland and grassland. We conclude that the conservation of topsoil in arid regions 
and improvements of soil depth representation and moisture-retention mechanisms are critical for carbon- 
sequestration ecosystem services under a changing climate. These findings and relationships should also be 
included in Earth system models. 
 
10.2  
"Soil’s Hidden Value: Mapping Available Water Capacity as a Component of 
Natural Capital in Australia" 
Nicolas Francos*, Alex McBratney, Damien Field, Budiman Minasny, Julio Pachon, Anilkumar Hunakunti, 
Jose Padarian, Wartini Ng, Sandra Evangelista, Peipei Xue, Thomas O’Donoghue 

Sydney Institute of Agriculture & School of Life & Environmental Sciences, The University of Sydney, NSW 
2006, Australia 
*Corresponding author: nicolas.francos@mail.sydney.edu.au 

Soil natural capital has been commonly considered difficult to quantify due to the many benefits that it 
provides. This task is challenging as many of them may overlap generating double accounting conflicts. 
Therefore, the soil capital value, an important dimension of soil security, may well have been undervalued. 

Available water capacity (AWC) is a critical property that serves as a soil security metric in all the soil security 
dimensions as shown in the proposal published by Evangelista et al., (2023). In that work, different soil roles 
were linked to AWC as it can be economically estimated. Between these roles we can mention food production, 
energy securing, climate balance and soil remediation. Although indirectly, AWC affects the implementation 
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of water conservation practices and policies. 

In this study we mapped the AWC for the whole of Australia on a pixel-by-pixel basis (83.3 meters) using 
legacy data from the Soil and Landscape of Australia (SLGA). To this end, we made careful integration of a 
soil thickness layer with other 6 AWC layers representing gradually increasing depths. The total AWC in 
megalitres (ML) units was transformed to monetary values considering the median value (80 AUD$/ML) for 
the 2022-2023 Southern Murray–Darling Basin which is the main irrigation water source in Australia. 

These values were then associated with 1370 classes each of which are considered homogeneous prior to the 
European settlement in Australia (≈year 1750). This classification represents similar soil formation factors as it 
was based on climate, vegetation, relief, parent material, and time related covariates.These classes are termed 
“pedogenons”, and the mean value per class was used to represent each pedogenic zone for a more robust 
analysis and to reduce possible inaccuracies. 

This analysis was applied to 991,394,526 pixels representing 83.33 metre resolution. Considering that the 
maximum soil thickness considered is 2 metres, this study estimated the total AWC soil natural capital in 
Australia as ≈ AUD$ 63,610,071,777 (≈USD$ 42,406,714,518). After filtering water bodies and pixels that did 
not match the examined layers, this analysis represents an area of 6,857,936 km2 out of 
≈7,692.024 km2 which is the total area of Australia. 
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10.3 
Producing and Utilizing a Digital Twin for a G.E.M Analysis to Improve Sustainable 
Farming 
Daniel J. Rooney et al. 

A digital twin is a virtual representation of a system and its components and is a useful tool for baselining, 
monitoring, modeling, and decision support in a growing number of industries. The digital twin is only as powerful as 
the accuracy and level of its characterization. In agricultural systems, particularly those involving intensely managed 
crops, adequate spatial, statistical, and information resolution is critical for the characterization and subsequent 
analysis of both the plants and the soil environment. A unique and powerful suite of technologies (Platform for 
Discovery) has been developed by LandScan that produces a digital twin for agriculture and enables a G.E.M. 
analysis (crop performance and behavior is a function of genetics, environment, and management). A G.E.M. enables 
quantifiable and objective decision support for industrial-scale sustainable farming by optimizing irrigation, nutrition, 
and soil health while maximizing production. A site is initially mapped by a remote sensing platform that obtains 
high-resolution photogrammetry fused with spectral and thermal imagery collected at various times throughout the 
growing season. Each plant is converted into a virtual, digital representation where it can be classified, baselined, and 
monitored. Multiple representative locations within each crop class are identified for the targeting of the 
characterization of the soil environment. A tool for digitally characterizing the soil in-situ is deployed that contains 7 
sensors capable of obtaining a continuous vertical profile to over 120cm in about a minute. The sensors include 
imagery, visible and near-infrared diffuse reflectance spectroscopy, acoustical, dielectric permittivity, electrical 
resistivity, tip force and sleeve friction. Because genetics and management are known, the result is a fully digital, 
objective, repeatable, and transferable method of creating a G.E.M. for any cropping system. Numerous ML/AI 
techniques are used to analyze the relationships between the G.E.M. attributes to generate practical management 
decisions on several almond orchards in central California. These case studies will be presented. One technique 
applies a multivariate frontier analysis to determine the maximum plant performance and behavior associated with 
one or more limiting soil factors so the grower can understand which factors can be practically managed and the 
opportunity cost/benefit to manage them. 
 
10.4 
The challenges of using references to interpret soil health indicators 
Daniel Liptzin 

Soil Health Institute 

In general, soil health is assessed by measuring soil health indicators. However, in order to quantify soil health, the 
local conditions need to be taken into account. That is, a value of soil organic carbon of 1% would be interpreted 
very differently depending on the location it came from. Our understanding of what soils should look like in a 
particular location is still largely based on Jenny’s state factor model. 

Human disturbance to soils has added a layer of complexity as management in agricultural systems has often 
changed the soils dramatically. Concepts like the genoform/phenoform and soil capability and condition are among 
the more recent ways to understand soil characteristics and functioning. In a soil health context, the Soil Health 
Institute is developing a benchmarks approach to provide insight into interpreting the current state of soils in various 
cropping systems. This approach depends on finding reference sites with perennial vegetation on similar soils to the 
cropped systems. While this approach is appropriate conceptually for evaluating soil health, there are challenges in 
practice. For example, in irrigated cropping systems, should the reference soils also be irrigated. What about 
cropping systems, like dairy forage, that continuously receive manure? Must the references also receive manure? 
Can the reference system have a perennial crop such as grass hay where most of the biomass is removed? Are some 
soil health indicators more or less sensitive to the type of reference? The choice of the appropriate reference may 
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depend on the cropping system of interest, but it is essential to carefully consider the choice of reference for 
quantifying and interpreting soil health 
 
10.5 
Contextualizing soil health measurements from farm to continent 
Nathaniel Looker1, Dianna Bagnall1, Jennifer Bower1, Jason Ackerson1, Cristine L. S. Morgan1 1Soil Health Institute 
Space-for-time soil health surveys improve the relevance of soil health measurements for land managers by 
providing evidence of the range of measurement values that soils can achieve across pedologic contexts and 
management systems. Designing sampling schemes for soil health surveys presents a tradeoff between specificity 
and generalizability: constraining sampling to a narrow range of inherent soil properties and site characteristics 
reduces the variance in measurements driven by factors other than management but limits the area over which 
inferences are applicable. We introduce soil health sampling groups (SHSGs) as a means of balancing specificity and 
generalizability when conducting soil health surveys at scale. 

Defined as unique combinations of soil surface particle size class and drainage class within geographic regions, 
SHSGs can be mapped using traditional soil surveys or digital soil models. SHSGs are easily substratified to allocate 
sampling effort across within-region gradients in environmental or anthropogenic factors (e.g., climate or accelerated 
erosion, respectively). We demonstrate how the SHSG framework facilitates prioritization of soils for sampling and 
identify the most important SHSGs (by area) per land use and crop across the United States and Canada. In addition 
to guiding soil sampling design, SHSGs can be used to communicate the importance of pedodiversity to non-
academic stakeholders. 
 
10.6 
Quantifying Soil Health Through an Efficient Set of Indicators and Management 
Indices 
Minerva J. Dorantes Soil Health Institute 
Providing farmers and growers a way of assessing and monitoring their progress towards improving soil health is 
crucial for adopting and maintaining sustainable practices. Quantifying and interpreting soil health, however, is 
challenging due to the absence of standardized metrics, laboratory costs, and the need for a systematic approach to 
compare management practices. In this study, we compared soilhealth indicators in conventional and soil health 
production systems against perennial reference systems across Iowa. An optimized soil sampling scheme was  
developed to collect 250 samples from farmer participant crop fields and perennial sites. Soil organic carbon, 
potential carbon mineralization, aggregate stability, and available water holding capacity were recorded for each site. 
Additionally, detailed management history was collected and translated into indices reflecting soil disturbance, living 
roots, and soil armor. The analysis accounted for the effect of management practices, inherent soil properties, and 
topographic factors on soil health. Results emphasize the necessity of accounting for inherent soil variability when 
collecting samples and evaluating soil health. They also underscore the significance of using management metrics to 
assess soil health. 
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10.7 
Scaling soil health assessment in the Golden Horseshoe region of Ontario, Canada 
Jenny Bower, Cristine Morgan 

Soil health assessment can be used to guide management decisions to ensure that soil maintains essential ecosystem 
functions. Efforts to accurately evaluate soil health are complicated by inherent soil properties and management and 
can be spatially limited. The goal of this work was to measure soil health using a stratified sampling design, 
determine the principal drivers of soil health, and test the relevance of this work in the study region and beyond. In 
the spring of 2023, 124 sites representing grain and oilseed farms and perennial reference sites were sampled on 
similar soils in the Golden Horseshoe region of Ontario, Canada. Enrollment in the program was voluntary, with 
specific soils and management systems prioritized. Three groups were sampled, representing high tillage frequency 
and no cover crops, minimum/no-till with or without cover crops, and untilled reference sites under perennial 
vegetation. Soil organic carbon stocks, respiration, and aggregate stability were measured at each site, and 
management data was collected. Significant differences in indicators were detected between all three management 
groups, the magnitude of which varied according to management. 

Results suggest that management and texture are dominant factors influencing soil health. Management data from 
this study is compared with regional management information to test the applicability of our results to the total 
landscape. The scalability of our work beyond the province in areas with similar soil- forming factors is investigated 
using datasets at multiple scales. This will enable us to fine-tune our collection of soil health observations to support 
decision making across scales. 
 
10.8 
Spatial modeling of dynamic soil properties in agricultural landscapes. 
Valentina Rubio Joseph Amsili Andrew McDonald David Rossiter Harold van Es 

Soil properties impact soils’ ability to function and provide ecosystem services. Evaluating soil functionality (soil 
health; SH) involves measuring a comprehensive set of soil properties that may vary over time and space due to 
interactions among inherent and baseline soil properties, current and historical land use, and management strategies. 
Soil inventories have traditionally focused on static properties, but soil functioning is increasingly defined by 
dynamic properties that are impacted by anthropogenic processes. Machine learning offers a promising option for 
modeling and mapping dynamic soil properties by integrating inherent and dynamic properties with remotely sensed 
data of its main drivers. However, the limited availability of land use and management data can pose challenges to 
these SH evaluations. The primary objectives of this study were to: 1) Assess the key drivers of dynamic soil 
characteristics through SH indicators across New York State; 2) Establish relationships between climate, inherent 
and baseline soil properties, and land use in relation to SH indicators; 3) Develop data-driven models for predicting 
and mapping dynamic soil properties at the regional scale; 4) Utilize the generated models to estimate the impacts of 
hypothetical regional land use change scenarios on dynamic soil properties. We evaluated a range of physical and 
biological properties (water holding capacity, wet aggregate stability, organic matter, soil protein, respiration, and 
active carbon) using 1,456 samples voluntarily submitted to the Cornell Soil Health Laboratory. To assess 
anthropogenic impacts, six-year USDA Crop-specific Land Cover data were used to identify land-use systems and 
crop and pasture frequencies, which were combined with mid and short- term NDVI values. Our approach proved to 
be a valuable strategy for modeling and mapping dynamic soil properties, with an average out-of-bag R2 value of 
0.58. Anthropogenic processes explained approximately 42% of the variations in dynamic properties. The geospatial 
application of machine learning models provided valuable insights into their variability and drivers, which can 
support policies and management interventions. While land use changes might have minor mean effects on dynamic 
soil properties over a region, understanding the spatial variations in changes allows solutions to be targeted to sites 
where higher benefits are anticipated. 
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10.9 
Quantifying the Spatial Variability of Dynamic Soil Properties 
Sage Reuter 

South Dakota State University 

Dynamic soil properties (DSPs) are a great tool for monitoring land-use changes and soil health metrics. The value of 
the information that they provide is used by the NRCS and other soil researchers to monitor and better understand the 
long-term effects of land management decisions. These studies capture the temporal variability of DSPs, but spatial 
variability is limited due to time and budged restraints. This project examines the variation with in-field sampling vs 
between field sampling to create a framework that will help soil scientists determine the decision-making process for 
sampling methods and locations in a statistically valid way. Using the framework and multi-source data integration, 
we can establish a more robust understanding of how single point data represents field scale management decisions. 
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